Mine

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 1731    Accepted Submission(s): 501

Problem Description
Have you ever played a game in Windows: Mine?
This game is played on a n*m board, just like the Pic(1)


On the board, Under some grids there are mines (represent by a red flag). There are numbers ‘A(i,j)’ on some grids means there’re A(i,j) mines on the 8 grids which shares a corner or a line with gird(i,j). Some grids are blank means there’re no mines on the 8 grids which shares a corner or a line with them.
At the beginning, all grids are back upward.
In each turn, Player should choose a back upward grid to click.
If he clicks a mine, Game over.
If he clicks a grid with a number on it , the grid turns over.
If he clicks a blank grid, the grid turns over, then check grids in its 8 directions.If the new grid is a blank gird or a grid with a number,it will be clicked too.
So If we click the grid with a red point in Pic(1), grids in the area be encompassed with green line will turn over.
Now Xiemao and Fanglaoshi invent a new mode of playing Mine. They have found out coordinates of all grids with mine in a game. They also find that in a game there is no grid will turn over twice when click 2 different connected components.(In the Pic(2), grid at (1,1) will turn over twice when player clicks (0,0) and (2,2) , test data will not contain these cases).
Then, starting from Xiemao, they click the grid in turns. They both use the best strategy. Both of them will not click any grids with mine, and the one who have no grid to click is the loser.
Now give you the size of board N, M, number of mines K, and positions of every mine Xi,Yi. Please output who will win.
 
Input
Multicase
The first line of the date is an integer T, which is the number of the text cases. (T<=50)
Then T cases follow, each case starts with 3 integers N, M, K indicates the size of the board and the number of mines.Then goes K lines, the ith line with 2 integer Xi,Yi means the position of the ith mine.
1<=N,M<=1000 0<=K<=N*M 0<=Xi<N 0<=Yi<M
 
Output
For each case, first you should print "Case #x: ", where x indicates the case number between 1 and T . Then output the winner of the game, either ”Xiemao” or “Fanglaoshi”. (without quotes)
 
Sample Input
2
3 3 0
3 3 1
1 1
 
Sample Output
Case #1: Xiemao
Case #2: Fanglaoshi
 
Source
 
    给出一幅扫雷的地图,告诉你地雷所在位置,两个人轮流点击非炸弹且未显示出来的方格。点击的是空白格子的话会触发八联通格子的点击(如果他们未显示的话),点击的是数字格的话则只会显示点击的这一个格子,不再触发其他的操作。问先手是否处于胜态。
   可以将这个问题划分为一块块的小地图,所有联通的空白格和与他们相邻的数字格是一个独立的游戏,(除去他们之后单独的一个数字格也看作是一个独立的游戏),他们之间不会影响。只要计算出这些子问题的sg值就能推出胜态了。对于独立的一个数字格,sg=1。对于另一种情况,通过枚举可以发现,sg=(子地图中的数字格的数量)%2+1;
 
  一开始dfs一直mle,换成了bfs就好了。还有注意地图是[0][0]开始的,,c。
  

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <vector>
#include <set>
#include <queue>
#include <stack>
using namespace std;
#define mp make_pair
#define pii pair<int,int>
int n,m,tot;
int e[][];
bool vis[][];
int fx[][]={-,,,,,-,,,-,-,-,,,-,,};
void bfs(int x,int y){
queue<pair<int,int> >q;
q.push(mp(x,y));
while(!q.empty()){
pii tmp=q.front();
q.pop();
if(vis[tmp.first][tmp.second]) continue;
vis[tmp.first][tmp.second]=;
if(e[tmp.first][tmp.second]==) {tot++;continue;}
for(int i=;i<;++i){
int dx=tmp.first+fx[i][];
int dy=tmp.second+fx[i][];
if(dx<||dy<||dx>n||dy>m||vis[dx][dy]) continue;
q.push(mp(dx,dy));
}
}
}
int main(){
int t,i,j,k,cas=;
cin>>t;
while(t--){
memset(vis,,sizeof(vis));
memset(e,,sizeof(e));
cin>>n>>m>>k;
int x,y;
while(k--){
scanf("%d%d",&x,&y);
x++;
y++;
vis[x][y]=;
e[x][y]=;
for(i=;i<;++i){
int dx=x+fx[i][];
int dy=y+fx[i][];
if(dx>&&dy>&&dx<=n&&dy<=m&&vis[dx][dy]==) e[dx][dy]=;
}
}
int sg=;
for(i=;i<=n;++i){
for(j=;j<=m;++j){
if(vis[i][j]||e[i][j]==) continue;
tot=;
bfs(i,j);
sg^=(tot%+);
}
}
for(i=;i<=n;++i)
for(j=;j<=m;++j)
if(!vis[i][j]&&e[i][j]==) sg^=;
printf("Case #%d: ",++cas);
sg?puts("Xiemao"):puts("Fanglaoshi");
}
return ;
}
  

hdu-4678-sg的更多相关文章

  1. hdu 4678 Mine

    HDU 4678 把点开空地时会打开的一大片区域看成一块,题目中说到,在一盘游戏 中,一个格子不可能被翻开两次,说明任意两块空地不会包含相同的格子. 那么就可以看成一个组合游戏. 当空地旁边没连任何数 ...

  2. hdu 5724 SG+状态压缩

    Chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  3. HDU 4678 Mine SG博弈

    http://acm.hdu.edu.cn/showproblem.php?pid=4678 自己太蠢...没学SG...还是浩神指点我SG精髓以后才A的这题...(第一题SG 这里子游戏之间没有影响 ...

  4. hdu 2147 SG函数打表(手写也可以) 找规律

    kiki's game Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 40000/1000 K (Java/Others) Total ...

  5. HDU 1848 SG函数博弈

    Fibonacci again and again Problem Description   任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的:F(1 ...

  6. hdu 3032 sg打表找规律 *

    有n堆石子,alice先取,每次可以选择拿走一堆石子中的1~x(该堆石子总数) ,也可以选择将这堆石子分成任意的两堆.alice与bob轮流取,取走最后一个石子的人胜利. 打表代码: #include ...

  7. HDU 1536 sg函数

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submi ...

  8. hdu 4678 Mine 博弈论

    这是一题简单的博弈论!! 所有的空白+边界的数字(个数为n)为一堆,容易推出其SG函数值为n%2+1: 其他所有的数字(个数为m)的SG值为m%2. 再就是用dfs将空白部分搜一下即可!(注意细节) ...

  9. hdu 1536 SG函数模板题

    S-Nim Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Subm ...

  10. hdu 4678

    HDU 4768: Flyer 题意: 有N个社团,每个社团三个属性A,B,C,表示会向编号A+k*C的同学发传单(k=0,1,2...  && A+k*C <= B).题目保证 ...

随机推荐

  1. SNMP学习笔记之SNMPWALK 安装与使用详解

    0x00 简介 snmpwalk是SNMP的一个工具,它使用SNMP的GETNEXT请求查询指定OID(SNMP协议中的对象标识)入口的所有OID树信息,并显示给用户.通过snmpwalk也可以查看支 ...

  2. Python3 异常: name 'basestring' is not defined

    Python3 异常: name 'basestring' is not defined 问题分析: python3 里已经没有basestring 类型,用str代替了basestring : 解决 ...

  3. Eclipse中把Java工程修改成web工程

    Eclipse中把Java工程修改成web工程 点击项目:右击:选择properties--输入project facets,将“Dynamic Web Module”打勾即可:

  4. 配置redis, make的时候: zmalloc.h:50:31: 致命错误:jemalloc/jemalloc.h:没有那个文件或目录

    今天正在centos7.3里面配置redis3.0, 结果make的时候抛出编译中断 CC adlist.o In file included from adlist.c:34:0: zmalloc. ...

  5. 微信小程序——1、文件的认识

    主体文件的构成 微信小程序的主体由三个部分组成,需放在主目录中,名称也是固定的 app.js:微信小程序的主逻辑文件,主要用来注册小程序 app.json:微信小程序的主配置文件,对微信小程序进行全局 ...

  6. java 类构造器中加入有参构造器及调用顺序【思路】

    package com.ykmimi.new1; /** * * @author deadzq * */ public class AnyThing { public AnyThing() { thi ...

  7. C# WinCE项目 VS2008 单例窗体实现

    项目现有主界面FormMain,模板界面FormModel,其余5个子界面皆继承自模板. 现在想要实现在主界面下可以打开任意子界面,并且可以随时关闭.当打开的子窗体未执行Close事件时,要保证每次显 ...

  8. Ubuntu 14.04下 Java通用安装方法

    参考: 解决Floodlight1.2+Mininet问题及使用安装 Ubuntu下安装JDK1.7图文详解 Ubuntu 14.04下 Java通用安装方法 1.到oracle官网下下载对应jdk包 ...

  9. 软件测试&安全测试高峰论坛

    Nubia测试以及介绍 基于Cucumber的自动化测试平台 常见Web漏洞之XSS,主要HTML与JS基础.XSS的基础知识与挖掘方法.XSS的利用 自动化测试框架以及测试思路

  10. C++基础-string截取、替换、查找子串函数

    1. 截取子串 s.substr(pos, n)    截取s中从pos开始(包括0)的n个字符的子串,并返回 s.substr(pos)        截取s中从从pos开始(包括0)到末尾的所有字 ...