注意:以下代码 只是描述思路,没有测试过!!

Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画过程如下图

3.算法代码实现:

const int  MAXINT = ;
const int MAXNUM = ;
int dist[MAXNUM];
int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0)
{
  bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
  for(int i=; i<=n; ++i)
   {
  dist[i] = A[v0][i];
  S[i] = false; // 初始都未用过该点
  if(dist[i] == MAXINT)
  prev[i] = -;
   else
  prev[i] = v0;
  }
  dist[v0] = ;
  S[v0] = true;   
   for(int i=; i<=n; i++)
   {
  int mindist = MAXINT;
  int u = v0;    // 找出当前未使用的点j的dist[j]最小值
   for(int j=; j<=n; ++j)
   if((!S[j]) && dist[j]<mindist)
   {
   u = j; // u保存当前邻接点中距离最小的点的号码
    mindist = dist[j];
   }
  S[u] = true;
  for(int j=; j<=n; j++)
   if((!S[j]) && A[u][j]<MAXINT)
   {
   if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
   {
  dist[j] = dist[u] + A[u][j]; //更新dist
  prev[j] = u; //记录前驱顶点
   }
   }
  }
}

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

转自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

最短路径-Dijkstra算法(转载)的更多相关文章

  1. 网络最短路径Dijkstra算法

    最近在学习算法,看到有人写过的这样一个算法,我决定摘抄过来作为我的学习笔记: <span style="font-size:18px;">/* * File: shor ...

  2. 单源最短路径Dijkstra算法,多源最短路径Floyd算法

    1.单源最短路径 (1)无权图的单源最短路径 /*无权单源最短路径*/ void UnWeighted(LGraph Graph, Vertex S) { std::queue<Vertex&g ...

  3. 最短路径-Dijkstra算法与Floyd算法

    一.最短路径 ①在非网图中,最短路径是指两顶点之间经历的边数最少的路径. AE:1    ADE:2   ADCE:3   ABCE:3 ②在网图中,最短路径是指两顶点之间经历的边上权值之和最短的路径 ...

  4. 数据结构实验之图论七:驴友计划 ( 最短路径 Dijkstra 算法 )

    数据结构实验之图论七:驴友计划 Time Limit: 1000 ms           Memory Limit: 65536 KiB Submit Statistic Discuss Probl ...

  5. 最短路径——Dijkstra算法以及二叉堆优化(含证明)

    一般最短路径算法习惯性的分为两种:单源最短路径算法和全顶点之间最短路径.前者是计算出从一个点出发,到达所有其余可到达顶点的距离.后者是计算出图中所有点之间的路径距离. 单源最短路径 Dijkstra算 ...

  6. 有向网络(带权的有向图)的最短路径Dijkstra算法

    什么是最短路径? 单源最短路径(所谓单源最短路径就是只指定一个顶点,最短路径是指其他顶点和这个顶点之间的路径的权值的最小值) 什么是最短路径问题? 给定一带权图,图中每条边的权值是非负的,代表着两顶点 ...

  7. Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...

  8. 图的最短路径-----------Dijkstra算法详解(TjuOj2870_The Kth City)

    做OJ需要用到搜索最短路径的题,于是整理了一下关于图的搜索算法: 图的搜索大致有三种比较常用的算法: 迪杰斯特拉算法(Dijkstra算法) 弗洛伊德算法(Floyd算法) SPFA算法 Dijkst ...

  9. 求两点之间最短路径-Dijkstra算法

     Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.D ...

随机推荐

  1. PHP 小技巧之如何避免参数多次传递?

    开发中经常遇到函数参数传递的问题:比如 A调用B,B调用C,C调用D, A->B->C->D 而D方法可能需要一个参数,这个参数只能在A中获取(比如A是控制器方法),这个参数这样一级 ...

  2. Netty源码分析之NioEventLoop(一)—NioEventLoop的创建

    一.NioEventLoop的概述 NioEventLoop做为Netty线程模型的核心部分,从本质上讲是一个事件循环执行器,每个NioEventLoop都会绑定一个对应的线程通过一个for(;;)循 ...

  3. VS2010安装顽疾解决方法:error 25541 failed to open xml file

    一.问题描述 因为之前(2012)对HDFS客户端Thrift接口的库文件封装使用的是VS2010,最近考虑做一个完整的网盘系统的客户端,就把该库文件使用起来,比较悲剧的是之前做过操作系统的还原.我的 ...

  4. bzoj4928: 第二题

    Description 对于一棵有根树,定义一个点u的k-子树为u的子树中距离u不超过k的部分. 注意,假如u的子树中不存在距离u为k的点,则u的k-子树是不存在的. 定义两棵子树是相同的,当且仅当不 ...

  5. MYSQL ERROR 1045 (28000): Access denied for user (using password: YES)解决方案详细说明

    1.首先这个问题出现的原因不详,可能是mysql的bug吧   2 解决步骤      1.首先停下mysql的服务  作者系统下命令为   /etc/init.d/mysqld stop  具体的停 ...

  6. Windows7无法访问共享文件夹(0x800704cf,0x80070035)解决方法

    Windows7系统突然无法访问Linux的samba服务器,出现0x800704cf或者0x80070035错误,也不能访问其他windows机器的共享文件夹,解决方案如下两张图,配置与下面两张图为 ...

  7. C#后台调用前台javascript的五种方法小结

    第一种,OnClientClick (vs2003不支持这个方法) <asp:Button ID="Button1" runat="server" Tex ...

  8. 【Linux_Unix系统编程】chapter5 深入探究文件IO

    Chapter5 深入探究文件I/O 本章节将介绍另一个与文件操作相关的系统调用:多用途的fcntl(),并展示其应用之一读取和设置打开文件的状态标志. 5.1 原子操作和竞争条件 所有系统调用都是以 ...

  9. ORM PetaPoco 框架的 CRUD 操作

    PetaPoco 的查询操作 public IEnumerable<T> GetAll(string sqlString, object[] obj) { try { IEnumerabl ...

  10. Executor框架(二)Executor 与 ExecutorService两个基本接口

    一.Executor 接口简介 Executor接口是Executor框架的一个最基本的接口,Executor框架的大部分类都直接或间接地实现了此接口. 只有一个方法 void execute(Run ...