粗糙集理论是一种研究不精确,不确定性知识的数学工具。

粗糙集理论的知识表达方式一般采用信息表或称为信息系统的形式,它可以表现为四元有序组K=(U,A,V,P)。其中U为对象的全体,即论域;A是属性全体;V是属性的值域;P为一个信息函数,反映了对象x在K中的完全信息。

粗糙集的思想为:

  一种类别对应一个概念(类别可以用集合表示,概念可以用规则描述),知识由概念组成;如果某个知识含有不精确概念,则该知识不精确。粗糙集对不精确概念的描述方法是通过下近似和上近似概念来描述。

  上近似包含了所有使用知识R可确切分类到X的元素。
  下近似包含了所有那些可能属于X的元素的最小集合。

粗糙集可以解决的问题可以如下一些:

  • 1,不确定或者不精确知识的表达
  • 2,经验学习并从经验中获取知识
  • 3,不一致信息的分析
  • 4,根据不完整得到,不确定的知识进行推理
  • 5,在保留信息的前提下进行数据化简
  • 6,识别并评估数据之间依赖关系

算法思想:

   粗糙集(RS)理论是一种刻画不完整性和不确定性的数学工具,能有效地分析和处理不精确、不一致和不完整等各种不完备信息,并从中发现隐含的知识,揭示潜在的规律。

优点

  • (1) 它能处理各种数据,包括不完整(incomplete) 的数据以及拥有众多变量的数据;
  • (2) 它能处理数据的不精确性和模棱两可(ambiguity),包括确定性和非确定性的情况;
  • (3) 它能求得知识的最小表达(reduct) 和知识的各种不同颗粒(granularity) 层次;
  • (4) 它能从数据中揭示出概念简单,易于操作的模式(pattern) ;
  • (5) 它能产生精确而又易于检查和证实的规则,特别适于智能控制中规则的自动生成.

基本概念

知识

  “知识”这个概念在不同的范畴内有多种不同的含义。在粗糙集理论中,“知识”被认为是一种分类能力。人们的行为是基于分辨现实的或抽象的对象的能力,如在远古时代,人们为了生存必须能分辨出什么可以食用,什么不可以食用;医生给病人诊断,必须辨别出患者得的是哪一种病。这些根据事物的特征差别将其分门别类的能力均可以看作是某种“知识”。 

不可分辨关系

  分类过程中,相差不大的个体被归于同一类,它们的关系就是不可分辨关系(indiscernibility relation). 假定只用两种黑白颜色把空间中的物体分割两类,{黑色物体},{白色物体},那么同为黑色的两个物体就是不可分辨的,因为描述它们特征属性的信息相同,都是黑色.
  如果再引入方,圆的属性,又可以将物体进一步分割为四类: {黑色方物体},{黑色圆物体},{白色方物体},{白色圆物体}. 这时,如果两个同为黑色方物体,则它们还是不可分辨的. 不可分辨关系是一种等效关系(equivalence relationship),两个白色圆物体间的不可分辨关系可以理解为它们在白,圆两种属性下存在等效关系.

基本集

  基本集(elementary set) 定义为由论域中相互间不可分辨的对象组成的集合,是组成论域知识的颗粒. 不可分辨关系这一概念在粗糙集理论中十分重要,它深刻地揭示出知识的颗粒状结构,是定义其它概念的基础. 知识可认为是一族 等效关系,它将论域分割成一系列的等效类。

集合

  粗糙集理论延拓了经典的集合论,把用于分类的知识嵌入集合内,作为集合组成的一部分. 一个对象a 是否属于集合X 需根据现有的知识来判断,可分为三种情况:
⑴ 对象a 肯定属于集合X ;
⑵ 对象a 肯定不属于集X ;
⑶ 对象a 可能属于也可能不属于集合X 。
  集合的划分密切依赖于我们所掌握的关于论域的知识,是相对的而不是绝对的.给定一个有限的非空集合U 称为论域,I 为U 中的一族等效关系,即关于U 的知识,则二元对 K = (U,I) 称为一个近似空间(approximation space). 设x 为U 中的一个对象,X为U 的一个子集,I (x) 表示所有与x 不可分辨的对象所组成的集合,换句话说,是由x 决定的等效类,即I (x) 中的每个对象都与x 有相同的特征属性(attribute)。

参考链接:

http://blog.csdn.net/chl033/article/details/3240500
http://blog.sina.com.cn/s/blog_65aba7b70100h5s0.html

【机器学习】粗糙集(Rough Set Approach)的更多相关文章

  1. 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)

    ##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. Bayesian Personalized Ranking 算法解析及Python实现

    1. Learning to Rank 1.1 什么是排序算法 为什么google搜索 ”idiot“ 后,会出现特朗普的照片? “我们已经爬取和存储了数十亿的网页拷贝在我们相应的索引位置.因此,你输 ...

  4. 粗糙集理论(Rough Set Theory)

    粗糙集理论(Rough Set Theory) 一种数据分析处理理论. <粗糙集—关于数据推理的理论>. 数据挖掘(Data Mining)和知识发现(KDD). 集合近似定义的基本思想及 ...

  5. 【机器学习】粗糙集属性约简算法与mRMR算法的本质区别

    1. 粗糙集属性约简算法仅仅选出属性重要度大的条件加入约减中,没有考虑约简中条件属性相互之间的冗余性,得到的约简往往不是都必要的,即含有冗余属性. 2. mRMR算法则除了考虑特征与类别之间的相关性, ...

  6. 【机器学习】粗糙集属性约简—Attribute Reduction

    介绍 RoughSets算法是一种比较新颖的算法,粗糙集理论对于数据的挖掘方面提供了一个新的概念和研究方法.本篇文章我不会去介绍令人厌烦的学术概念,就是简单的聊聊RoughSets算法的作用,直观上做 ...

  7. 机器学习资源汇总----来自于tensorflow中文社区

    新手入门完整教程进阶指南 API中文手册精华文章TF社区 INTRODUCTION 1. 新手入门 1.1. 介绍 1.2. 下载及安装 1.3. 基本用法 2. 完整教程 2.1. 总览 2.2.  ...

  8. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  9. paper 118:计算机视觉、模式识别、机器学习常用牛人主页链接

    牛人主页(主页有很多论文代码) Serge Belongie at UC San Diego Antonio Torralba at MIT Alexei Ffros at CMU Ce Liu at ...

随机推荐

  1. Lua队列问题

    今天看到Lua程序设计第11章了,表示按照书中的例子打出来,但是不知道正确写用: List = {} function List.new () return {first = 0, last = -1 ...

  2. 数据结构学习之stack

    不能小看这些基本的数据结构,写了才发现还是会有问题出现的. 有码有真相: #pragma once class MyStack { public: MyStack(void); ~MyStack(vo ...

  3. 基本的RAID介绍

    RAID是一个我们经常能见到的名词.但却因为很少能在实际环境中体验,所以很难对其原理 能有很清楚的认识和掌握.本文将对RAID技术进行介绍和总结,以期能尽量阐明其概念. RAID全称为独立磁盘冗余阵列 ...

  4. 解决IE弹框提示“是否停止运行此脚本”问题

    有少数情况因为js处理内容较多,系统计算标红和刷新页面较慢,IE可能会弹框提示“是否停止运行此脚本”,若想要继续,点击“否”即可.并同时按照下面的设置更改一下注册表,即可解决弹框问题. http:// ...

  5. Ubuntu菜鸟入门(十五)—— 安装aras2下载软件

    一.安装arias2 sudo add-apt-repository ppa:t-tujikawa/ppa sudo apt-get update sudo apt-get install aria2 ...

  6. mvc 模型验证及正则表达式

    ASP.NET MVC3中的Model是自验证的,这是通过.NET4的System.ComponentModel.DataAnnotations命名空间完成的. 我们要做的只是给Model类的各属性加 ...

  7. libevent的问题

    问题: nginx error while loading shared libraries: libevent-2.0.so.5: cannot open shared object file: N ...

  8. golang ---image

    package main import ( "image" "image/color" "image/gif" "os" ...

  9. 【Python】Windows平台下Python、Pydev连接Mysql数据库

    Mysql数据库是跨平台的,不是说Python一定就要连接Mongodb. Python连接Mysql数据库是非常easy的. 首先,你要配置好Python的开发环境,详见<[Python]Wi ...

  10. Web Service 或 WCF调用时读取 XML 数据时,超出最大字符串内容长度配额(8192)解决方法

    1.调用服务时服务 当我们使用 Web Service 或 WCF 服务时,常把读取的数据转化为string类型(xml格式),当数据量达到一 定数量时,会出现以下异常: 错误:格式化程序尝试对消息反 ...