YARN Architecture
The fundamental idea of YARN is to split up the functionalities of resource management and job scheduling/monitoring into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job or a DAG of jobs.
The ResourceManager and the NodeManager form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system. The NodeManager is the per-machine framework agent who is responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager/Scheduler.
The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.
YARN的基本构想是将资源管理器和作业调度器/监控器分开成两个单独的进程。这个想法是为了拥有一个全局的资源管理器(RM)和每一个应用都有一个应用控制器。应用可以是一个单独的作业也可以是一组作业。
ResourceManager和NodeManager构成数据计算框架。RM是最终的权威仲裁系统中的所有应用的资源分配。NodeManager是框架在每台机器中负责containers的代理,监控它们的资源使用(内存、CPU、磁盘和网络)和将其汇报给ResourceManager/调度器。监控它们的资源使用(内存、CPU、磁盘和网络)和将其汇报给ResourceManager/调度器。
每个应用程序的ApplicationMaster实际上是框架指定的库负责从RM谈判获取资源并和MM一起工作来执行和监控任务。
The ResourceManager has two main components: Scheduler and ApplicationsManager.
The Scheduler is responsible for allocating resources to the various running applications subject to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that it performs no monitoring or tracking of status for the application. Also, it offers no guarantees about restarting failed tasks either due to application failure or hardware failures. The Scheduler performs its scheduling function based the resource requirements of the applications; it does so based on the abstract notion of a resource Container which incorporates elements such as memory, cpu, disk, network etc.
The Scheduler has a pluggable policy which is responsible for partitioning the cluster resources among the various queues, applications etc. The current schedulers such as the CapacityScheduler and the FairScheduler would be some examples of plug-ins.
The ApplicationsManager is responsible for accepting job-submissions, negotiating the first container for executing the application specific ApplicationMaster and provides the service for restarting the ApplicationMaster container on failure. The per-application ApplicationMaster has the responsibility of negotiating appropriate resource containers from the Scheduler, tracking their status and monitoring for progress.
MapReduce in Hadoop-2.x maintains API compatibility with previous stable release (hadoop-1.x). This means that all MapReduce jobs should still run unchanged on top of YARN with just a recompile.
ResourceManager有两个主要的组成部分:调度器和应用管理器。
调度器负责给各个正在运行的拥有相似的约束如容量,队列等的应用分配资源。调度器是一个纯粹的调度器而不负责监控或者跟踪应用的状态。他也不负责恢复由于应用失效或者硬件失效而失败的任务。调度器根据应用的资源需求来执行它的调度。而不是根据一个抽象资源“容器”包含的元素例如内存、CPU、磁盘和网络等
调度器是一个可插拔的组件负责将资源分配给各种各样的队列、应用等。目前的容量调度器和公平调度器将成为一些插件的例子。
应用管理器负责接收作业的提交、选择第一个容器用来运行应用指定的应用控制器和提供当ApplicationMaster容器失效时的重启。每个应用的ApplicationMaster负责从调度器那里谈判获取合适的资源容器,跟踪他们的状态和监控过程。
hadoop-2.x中的MapReduce兼容前面稳定的版本(hadoop-1.x)。这就意味着所有的MapReduce作业只需要再编译一次无需做任何改变就可以运行在YARN上。
YARN Architecture的更多相关文章
- Hadoop官方文档翻译——YARN Architecture(2.7.3)
The fundamental idea of YARN is to split up the functionalities of resource management and job sched ...
- 论文阅读笔记 - YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http:/ ...
- YARN : Architecture of Next Generation Apache Hadoop MapReduceFramework
转自:http://blog.csdn.net/colorant/article/details/9146201 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoo ...
- Docker on YARN在Hulu的实现
这篇文章是我来Hulu这一年做的主要工作,结合当下流行的两个开源方案Docker和YARN,提供了一套灵活的编程模型,目前支持DAG编程模型,将会支持长服务编程模型. 基于Voidbox,开发者可以很 ...
- <YaRN><Official doc><RM REST API's>
Overview ... YARN Architecture The fundamental idea of YARN is to split up the functionalities of re ...
- YARN结构分析与工作流程
YARN Architecture Link: http://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html ...
- Hadoop官方文档翻译——MapReduce Tutorial
MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...
- HADOOP 2架构图
HDFS 2 architecture YARN architecture
- 大数据入门第七天——MapReduce详解(一)入门与简单示例
一.概述 1.map-reduce是什么 Hadoop MapReduce is a software framework for easily writing applications which ...
随机推荐
- Ubuntu 13.10 下安装搜狗输入法
1.卸载ibus输入法: sudo apt-get remove ibus sudo为取得root权限的意思,Ubuntu系统默认root账户关闭,很多操作需要取得root 权限才可以 ...
- 与MQ通讯的完整JAVA程序
该程序实现了发送消息与读取消息的功能,见其中的 send***与get***方法.这只适合于测试,因为环境中的程序还需要对此有稍微的更改,在真实的环境中肯定是在while(true){...} 的无限 ...
- 【Java并发编程五】信号量
一.概述 技术信号量用来控制能够同时访问某特定资源的活动的数量,或者同时执行某一给定操作的数据.计数信号量可以用来实现资源池或者给一个容器限定边界. 信号量维护了一个许可集,许可的初始量通过构造函数传 ...
- GCC编译命令常用选项
GCC是GUN Compiler Collection的简称,除编译程序外,还包含其他相关工具.GCC可将高级语言编写的源代码构建成计算机直接执行的二进制代码.GCC是Linux平台下最常用的编译程序 ...
- MFC 刷新函数:Invaldate,UpdateWindow,InvaldateRect
在窗口刷新和绘制的过程中,常常需要用到窗口刷新函数.一般用于窗口图形刷新的函数有:UpdateWindows().Invaldate().InvaldateRect(). 先说UpdateWindow ...
- sencha touch Carousel 自动切换
代码是在网上找的,忘记原出处了 /** * 跑马灯自动切换 */ Ext.define('ux.RotatingCarousel', { extend: 'Ext.carousel.Carousel' ...
- [原]git的使用(五)---删除文件
9.删除文件 [实践出真知] 创建test.txt 文件 并add 和commit到仓库 $ git status #新增加的文件test.txt On branch master Untracke ...
- php5.4 traits
PHP 5.4中的traits,是新引入的特性,中文还真不知道如何准确翻译好.其实际的目的,是为了有的场合想用多继承,但PHP又没多继承,于是就发明了这样的一个东西. Traits可以理解 ...
- async 与await
一. async 与await (https://segmentfault.com/a/1190000007535316) 1.async 是“异步”的简写,而 await 可以认为是 async w ...
- 【CF917D】Stranger Trees 树形DP+Prufer序列
[CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...