Pog and Szh are playing games. Firstly Pog draw a tree on the paper. Here we define 1 as the root of the tree.Then Szh choose some nodes from the tree. He wants Pog helps to find the least common ancestor (LCA) of these node.The question is too difficult for Pog.So he decided to simplify the problems.The nodes picked are consecutive numbers from lili to riri ([li,ri])([li,ri]). 

Hint : You should be careful about stack overflow !

InputSeveral groups of data (no more than 3 groups,n≥10000n≥10000 or Q≥10000Q≥10000). 

The following line contains ans integers,n(2≤n≤300000)n(2≤n≤300000). 

AT The following n−1n−1 line, two integers are bibi and cici at every line, it shows an edge connecting bibi and cici. 

The following line contains ans integers,Q(Q≤300000)Q(Q≤300000). 

AT The following QQ line contains two integers li and ri(1≤li≤ri≤n1≤li≤ri≤n).OutputFor each case,output QQ integers means the LCA of [li,ri][li,ri].Sample Input

5
1 2
1 3
3 4
4 5
5
1 2
2 3
3 4
3 5
1 5

Sample Output

1
1
3
3
1

Hint

Be careful about stack overflow.
        

用BFS 预处理不会爆栈  注意看n的范围 看到前面的1e5就以为是1e5了

f[i][j]表示节点i的第2^j个祖先

#include <iostream>
#include <algorithm>
#include <stdlib.h>
#include <cstring>
#include <vector>
#include <map>
#include <set>
#include <stdio.h>
#include <queue>
#include <stack>
#define inf 0x3f3f3f3f
using namespace std; int n, q, ecnt;
const int maxn = 300005;
struct edge{
int v, next;
}e[maxn << 1];
int dep[maxn], f[20][maxn], head[maxn]; void bfs(int rt)
{
queue<int> q;
q.push(rt);
f[0][rt] = rt;
dep[rt] = 0;
while(!q.empty()){
int tmp = q.front();
q.pop();
for(int i = 1; i < 20; i++){
f[i][tmp] = f[i - 1][f[i - 1][tmp]];
}
for(int i = head[tmp]; i != -1; i = e[i].next){
int v = e[i].v;
if(v == f[0][tmp]) continue;
dep[v] = dep[tmp] + 1;
f[0][v] = tmp;
q.push(v);
}
}
} int LCA(int u, int v)
{
if(dep[u] > dep[v]) swap(u, v);
int hu = dep[u], hv = dep[v];
int tu = u, tv = v;
for(int det = hv - hu, i = 0; det; det >>= 1, i++){
if(det & 1){
tv = f[i][tv];
}
}
if(tu == tv){
return tu;
}
for(int i = 19; i >= 0; i--){
if(f[i][tu] == f[i][tv]){
continue;
}
tu = f[i][tu];
tv = f[i][tv];
}
return f[0][tu]; } void init()
{
memset(head, -1, sizeof(head));
ecnt = 0;
} void adde(int u, int v)
{
e[ecnt].v = v;
e[ecnt].next = head[u];
head[u] = ecnt++;
} int dp[maxn][20];
int main()
{
while(scanf("%d", &n) != EOF){
init();
for(int i = 1; i < n; i++){
int x, y;
scanf("%d%d", &x, &y);
adde(x, y);
adde(y, x);
}
bfs(1);
for(int i = 1; i <= n; i++){
dp[i][0] = i;
}
for(int j = 1; j < 20; j++){
for(int i = 1; i + (1 << j) - 1 <= n; i++){
dp[i][j] = LCA(dp[i][j - 1], dp[i + (1 << (j - 1))][j - 1]);
}
} scanf("%d", &q);
while(q--){
int l, r;
scanf("%d%d", &l, &r);
int k = (int)log2(r - l + 1);
cout<<LCA(dp[l][k], dp[r - (1 << k) + 1][k])<<endl;
}
}
return 0;
}

hdu5266 pog loves szh III 【LCA】【倍增】的更多相关文章

  1. HDU 5266 pog loves szh III ( LCA + SegTree||RMQ )

    pog loves szh III Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Oth ...

  2. HDU 5266 pog loves szh III (LCA)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5266 题目就是让你求LCA,模版题.注意dfs会栈溢出,所以要扩栈,或者用bfs写. #pragma ...

  3. hdu 5266 pog loves szh III(lca + 线段树)

    I - pog loves szh III Time Limit:6000MS     Memory Limit:131072KB     64bit IO Format:%I64d & %I ...

  4. HDU 5266 pog loves szh III(区间LCA)

    题目链接 pog loves szh III 题意就是  求一个区间所有点的$LCA$. 我们把$1$到$n$的$DFS$序全部求出来……然后设$i$的$DFS$序为$c[i]$,$pc[i]$为$c ...

  5. HDU 5266 pog loves szh III 线段树,lca

    Pog and Szh are playing games. Firstly Pog draw a tree on the paper. Here we define 1 as the root of ...

  6. HDU 5266 pog loves szh III (线段树+在线LCA转RMQ)

    题目地址:HDU 5266 这题用转RMQ求LCA的方法来做的很easy,仅仅须要找到l-r区间内的dfs序最大的和最小的就能够.那么用线段树或者RMQ维护一下区间最值就能够了.然后就是找dfs序最大 ...

  7. HDU 5266 pog loves szh III

    题意:给出一棵树,1为根节点,求一段区间内所有点的最近公共祖先. 解法:用一棵线段树维护区间LCA.LCA是dp做法.dp[i][j]表示点i的第2^j个祖先是谁,转移方程为dp[i][j] = dp ...

  8. hdu 5265 pog loves szh II

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5265 pog loves szh II Description Pog and Szh are pla ...

  9. hdu 5264 pog loves szh I

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5264 pog loves szh I Description Pog has lots of stri ...

随机推荐

  1. 假设数组a有n个元素,元素取值范围是1~n,如何判定数组是否存在重复元素

    方法一:位图法,原理是首先申请一个长度为n且均为’0’组成的字符串,字符串的下标即为数组a[]中的元素,然后从头开始遍历数组a[N],取每个数组元素的值,将其对应的字符串中的对应位置置1,如果已经置过 ...

  2. Nginx Session Sticky

    nginx的粘性session主要通过nginx-sticky-module实现 1 下载 nginx-sticky-module 下载地址:https://code.google.com/p/ngi ...

  3. SpringMVC -- 梗概--源码--壹--springMVC json处理

    附:实体类 Class : User package com.c61.entity; import java.text.SimpleDateFormat; import java.util.Date; ...

  4. 18个不常见的C#关键字,您使用过几个?

    转自:http://www.cnblogs.com/zhuqil/archive/2010/04/09/UnCommon-Csharp-keywords-A-Look.html 1.__arglist ...

  5. iOS protocbuf安装使用

    protobuf文件地址:https://github.com/google/protobuf 1.问题/usr/local.bak/lib /usr/local.bak/man /usr/local ...

  6. Java Cookie工具类,Java CookieUtils 工具类,Java如何增加Cookie

    Java Cookie工具类,Java CookieUtils 工具类,Java如何增加Cookie >>>>>>>>>>>>& ...

  7. Kafka 0.11版本新功能介绍 —— 空消费组延时rebalance

    在0.11之前的版本中,多个consumer实例加入到一个空消费组将导致多次的rebalance,这是由于每个consumer instance启动的时间不可控,很有可能超出coordinator确定 ...

  8. vc11(vs2012)下编译php源码

    需要原料: vs2012.php源码 1.本机的mingw没搞定,参考网上文章尝试vs2012编译,借助vs2012自带的命令行工具: 需要去bison官网下载bison.exe放在“c:/windo ...

  9. linux c++环境

    set expandtab set autoindent set smartindent

  10. jQuery事件处理(七)

    1.自定义事件(用户手动trigger的一般都是自定义事件) trigger: function( event, data, elem, onlyHandlers ) { var i, cur, tm ...