17-numpy笔记-莫烦pandas-5
代码
import pandas as pd
import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'],
'A':['A0','A1','A3','A3'],
'B':['B0','B1','B2','B3'],}) right=pd.DataFrame({'key':['K0','K1','K2','K3'],
'C':['C0','C1','C3','C3'],
'D':['D0','D1','D2','D3'],}) print('-1-')
print(left)
print(right) res = pd.merge(left,right,on='key')
print(res) left=pd.DataFrame({'key1':['K0','K0','K1','K2'],
'key2':['K0','K1','K0','K1'],
'A':['A0','A1','A3','A3'],
'B':['B0','B1','B2','B3'],}) right=pd.DataFrame({'key1':['K0','K1','K1','K2'],
'key2':['K0','K0','K0','K0'],
'C':['C0','C1','C3','C3'],
'D':['D0','D1','D2','D3'],}) print('-2-')
res = pd.merge(left,right,on=['key1','key2'])
print(left)
print(right)
print(res) # default
print('-3-')
res = pd.merge(left,right,on=['key1','key2'],how='inner')
print(left)
print(right)
print(res) print('-4-')
res = pd.merge(left,right,on=['key1','key2'],how='outer')
print(left)
print(right)
print(res) print('-5-')
res = pd.merge(left,right,on=['key1','key2'],how='right')
print(left)
print(right)
print(res) print('-6-')
res = pd.merge(left,right,on=['key1','key2'],how='left')
print(left)
print(right)
print(res) print('-7-')
df1 = pd.DataFrame({'col1':[0,1],'col_left':['a','b']})
df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
print(df1)
print(df2)
res = pd.merge(df1,df2,on='col1',how='outer',indicator=True)
print(res) res = pd.merge(df1,df2,on='col1',how='outer',indicator=True)
print(res) res = pd.merge(df1,df2,on='col1',how='outer',indicator='indicator_column')
print(res) df1 = pd.DataFrame({'A':['A0','A1','A2'],
'B':['B0','B1','B2']},
index=['K0','K1','K2']) df2 = pd.DataFrame({'C':['C0','C1','C2'],
'D':['D0','D1','D2']},
index=['K0','K1','K2']) print(df1)
print(df2) print('-8-')
res=pd.merge(left,right,left_index=True,right_index=True,how='outer')
print(res) print('-9-')
res=pd.merge(left,right,left_index=True,right_index=True,how='inner')
print(res) boys = pd.DataFrame({'k':['K0','K1','K2'],'age':[1,2,3]})
girls = pd.DataFrame({'k':['K0','K0','K3'],'age':[4,5,6]}) print('-10-')
print(boys)
print(girls) res = pd.merge(boys, girls, on='k', suffixes=['_boy','_girl'],how='inner')
print(res) res = pd.merge(boys, girls, on='k', suffixes=['_boy','_girl'],how='outer')
print(res)
输出
-1-
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A3 B2
3 K3 A3 B3
key C D
0 K0 C0 D0
1 K1 C1 D1
2 K2 C3 D2
3 K3 C3 D3
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K2 A3 B2 C3 D2
3 K3 A3 B3 C3 D3
-2-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A3 B2 C1 D1
2 K1 K0 A3 B2 C3 D2
-3-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A3 B2 C1 D1
2 K1 K0 A3 B2 C3 D2
-4-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A3 B2 C1 D1
3 K1 K0 A3 B2 C3 D2
4 K2 K1 A3 B3 NaN NaN
5 K2 K0 NaN NaN C3 D3
-5-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A3 B2 C1 D1
2 K1 K0 A3 B2 C3 D2
3 K2 K0 NaN NaN C3 D3
-6-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A3 B2 C1 D1
3 K1 K0 A3 B2 C3 D2
4 K2 K1 A3 B3 NaN NaN
-7-
col1 col_left
0 0 a
1 1 b
col1 col_right
0 1 2
1 2 2
2 2 2
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
col1 col_left col_right indicator_column
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
A B
K0 A0 B0
K1 A1 B1
K2 A2 B2
C D
K0 C0 D0
K1 C1 D1
K2 C2 D2
-8-
key1_x key2_x A B key1_y key2_y C D
0 K0 K0 A0 B0 K0 K0 C0 D0
1 K0 K1 A1 B1 K1 K0 C1 D1
2 K1 K0 A3 B2 K1 K0 C3 D2
3 K2 K1 A3 B3 K2 K0 C3 D3
-9-
key1_x key2_x A B key1_y key2_y C D
0 K0 K0 A0 B0 K0 K0 C0 D0
1 K0 K1 A1 B1 K1 K0 C1 D1
2 K1 K0 A3 B2 K1 K0 C3 D2
3 K2 K1 A3 B3 K2 K0 C3 D3
-10-
k age
0 K0 1
1 K1 2
2 K2 3
k age
0 K0 4
1 K0 5
2 K3 6
k age_boy age_girl
0 K0 1 4
1 K0 1 5
k age_boy age_girl
0 K0 1.0 4.0
1 K0 1.0 5.0
2 K1 2.0 NaN
3 K2 3.0 NaN
4 K3 NaN 6.0
17-numpy笔记-莫烦pandas-5的更多相关文章
- 16-numpy笔记-莫烦pandas-4
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 15-numpy笔记-莫烦pandas-3
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 14-numpy笔记-莫烦pandas-2
代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...
- 18-numpy笔记-莫烦pandas-6-plot显示
代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...
- 13-numpy笔记-莫烦pandas-1
代码 import pandas as pd import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-') print(s) ...
- 11-numpy笔记-莫烦基础操作1
代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...
- 12-numpy笔记-莫烦基本操作2
代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...
- Python pandas & numpy 笔记
记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...
- tensorflow学习笔记-bili莫烦
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...
随机推荐
- ASP.NET开发实战——(七)ASP.NET与数据库
在之前的文章中介绍了使用ASP.NET MVC来开发一个博客系统,并且已将初具雏形,可以查看文章列表页面,也可以点击文章列表的其中一篇文章查看详情,这已经完成了最开始需求分析的读者的查看列表和查看文章 ...
- VBS实现UTC时间和本地时间互转
本地时间转UTC时间 dim SWDT, datetime, utcTime Set SWDT = CreateObject("WbemScripting.SWbemDateTime&quo ...
- codevs 3304 水果姐逛水果街Ⅰ
这道题可以用ST表过: 题目链接 记录4个数组:maxval[][], minval[][], ans[][], rans[][] maxval[i][j]表示从i号元素开始,长度为(1<< ...
- centos7彻底卸载mysql和通过yum安装mysql
彻底卸载mysql 查看是否有安装的mysql rpm -qa | grep -i mysql // 查看命令1 1 这里写图片描述 yum list install mysql* // 查看命令2 ...
- Linux网络编程基础API
第5章 Linux网络编程基础API 探讨Linux网络编程基础API与内核中TCP/IP协议族之间的关系,并未后续章节提供编程基础.从3个方面讨论Linux网络API. socket地址API.so ...
- 微信小程序跳转页面时参数过长导致参数丢失
问题描述: 微信小程序:跳转页面时传参,参数过长导致参数丢失 跳转到文章详情页时,使用的文章链接e.currentTarget.dataset.id过长导致参数丢失 handleClickArticl ...
- 【Zabbix】zabora批量部署
zabora简化批量部署 目的:简化部署zabora,批量监控数据库的常用指标 1 数据库用户赋权 上传cre_arp_monitor.sh,并且部署用户. [root@oradb ~]# chown ...
- Kafka 2.3 Producer (0.9以后版本适用)
kafka0.9版本以后用java重新编写了producer,废除了原来scala编写的版本. 这里直接使用最新2.3版本,0.9以后的版本都适用. 注意引用的包为:org.apache.kafka. ...
- CentOS系统安装Python3
准备: CentOS 6.4系统 Python-3.6.5.tgz 下载地址: 官网:https://www.python.org/downloads/release/python-365/ 镜像:h ...
- Linux入门——初识Linux
Linux入门——初识Linux 摘要:本文主要说明了Linux是什么,Linux发展历史,以及同Linux系统有关的一些基本知识. 简介 操作系统 Linux系统同Windows系统.Mac系统一样 ...