代码

import pandas as pd
import numpy as np left=pd.DataFrame({'key':['K0','K1','K2','K3'],
'A':['A0','A1','A3','A3'],
'B':['B0','B1','B2','B3'],}) right=pd.DataFrame({'key':['K0','K1','K2','K3'],
'C':['C0','C1','C3','C3'],
'D':['D0','D1','D2','D3'],}) print('-1-')
print(left)
print(right) res = pd.merge(left,right,on='key')
print(res) left=pd.DataFrame({'key1':['K0','K0','K1','K2'],
'key2':['K0','K1','K0','K1'],
'A':['A0','A1','A3','A3'],
'B':['B0','B1','B2','B3'],}) right=pd.DataFrame({'key1':['K0','K1','K1','K2'],
'key2':['K0','K0','K0','K0'],
'C':['C0','C1','C3','C3'],
'D':['D0','D1','D2','D3'],}) print('-2-')
res = pd.merge(left,right,on=['key1','key2'])
print(left)
print(right)
print(res) # default
print('-3-')
res = pd.merge(left,right,on=['key1','key2'],how='inner')
print(left)
print(right)
print(res) print('-4-')
res = pd.merge(left,right,on=['key1','key2'],how='outer')
print(left)
print(right)
print(res) print('-5-')
res = pd.merge(left,right,on=['key1','key2'],how='right')
print(left)
print(right)
print(res) print('-6-')
res = pd.merge(left,right,on=['key1','key2'],how='left')
print(left)
print(right)
print(res) print('-7-')
df1 = pd.DataFrame({'col1':[0,1],'col_left':['a','b']})
df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
print(df1)
print(df2)
res = pd.merge(df1,df2,on='col1',how='outer',indicator=True)
print(res) res = pd.merge(df1,df2,on='col1',how='outer',indicator=True)
print(res) res = pd.merge(df1,df2,on='col1',how='outer',indicator='indicator_column')
print(res) df1 = pd.DataFrame({'A':['A0','A1','A2'],
'B':['B0','B1','B2']},
index=['K0','K1','K2']) df2 = pd.DataFrame({'C':['C0','C1','C2'],
'D':['D0','D1','D2']},
index=['K0','K1','K2']) print(df1)
print(df2) print('-8-')
res=pd.merge(left,right,left_index=True,right_index=True,how='outer')
print(res) print('-9-')
res=pd.merge(left,right,left_index=True,right_index=True,how='inner')
print(res) boys = pd.DataFrame({'k':['K0','K1','K2'],'age':[1,2,3]})
girls = pd.DataFrame({'k':['K0','K0','K3'],'age':[4,5,6]}) print('-10-')
print(boys)
print(girls) res = pd.merge(boys, girls, on='k', suffixes=['_boy','_girl'],how='inner')
print(res) res = pd.merge(boys, girls, on='k', suffixes=['_boy','_girl'],how='outer')
print(res)

  

输出

-1-
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A3 B2
3 K3 A3 B3
key C D
0 K0 C0 D0
1 K1 C1 D1
2 K2 C3 D2
3 K3 C3 D3
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K2 A3 B2 C3 D2
3 K3 A3 B3 C3 D3
-2-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A3 B2 C1 D1
2 K1 K0 A3 B2 C3 D2
-3-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A3 B2 C1 D1
2 K1 K0 A3 B2 C3 D2
-4-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A3 B2 C1 D1
3 K1 K0 A3 B2 C3 D2
4 K2 K1 A3 B3 NaN NaN
5 K2 K0 NaN NaN C3 D3
-5-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A3 B2 C1 D1
2 K1 K0 A3 B2 C3 D2
3 K2 K0 NaN NaN C3 D3
-6-
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A3 B2
3 K2 K1 A3 B3
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C3 D2
3 K2 K0 C3 D3
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A3 B2 C1 D1
3 K1 K0 A3 B2 C3 D2
4 K2 K1 A3 B3 NaN NaN
-7-
col1 col_left
0 0 a
1 1 b
col1 col_right
0 1 2
1 2 2
2 2 2
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
col1 col_left col_right indicator_column
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
A B
K0 A0 B0
K1 A1 B1
K2 A2 B2
C D
K0 C0 D0
K1 C1 D1
K2 C2 D2
-8-
key1_x key2_x A B key1_y key2_y C D
0 K0 K0 A0 B0 K0 K0 C0 D0
1 K0 K1 A1 B1 K1 K0 C1 D1
2 K1 K0 A3 B2 K1 K0 C3 D2
3 K2 K1 A3 B3 K2 K0 C3 D3
-9-
key1_x key2_x A B key1_y key2_y C D
0 K0 K0 A0 B0 K0 K0 C0 D0
1 K0 K1 A1 B1 K1 K0 C1 D1
2 K1 K0 A3 B2 K1 K0 C3 D2
3 K2 K1 A3 B3 K2 K0 C3 D3
-10-
k age
0 K0 1
1 K1 2
2 K2 3
k age
0 K0 4
1 K0 5
2 K3 6
k age_boy age_girl
0 K0 1 4
1 K0 1 5
k age_boy age_girl
0 K0 1.0 4.0
1 K0 1.0 5.0
2 K1 2.0 NaN
3 K2 3.0 NaN
4 K3 NaN 6.0

  

17-numpy笔记-莫烦pandas-5的更多相关文章

  1. 16-numpy笔记-莫烦pandas-4

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  2. 15-numpy笔记-莫烦pandas-3

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  3. 14-numpy笔记-莫烦pandas-2

    代码 import pandas as pd import numpy as np dates = pd.date_range('20130101', periods=6) df=pd.DataFra ...

  4. 18-numpy笔记-莫烦pandas-6-plot显示

    代码 import pandas as pd import numpy as np import matplotlib.pyplot as plt data = pd.Series(np.random ...

  5. 13-numpy笔记-莫烦pandas-1

    代码 import pandas as pd import numpy as np s = pd.Series([1,3,6,np.nan, 44,1]) print('-1-') print(s) ...

  6. 11-numpy笔记-莫烦基础操作1

    代码 import numpy as np array = np.array([[1,2,5],[3,4,6]]) print('-1-') print('数组维度', array.ndim) pri ...

  7. 12-numpy笔记-莫烦基本操作2

    代码 import numpy as np A = np.arange(3,15) print('-1-') print(A) print('-2-') print(A[3]) A = np.aran ...

  8. Python pandas & numpy 笔记

    记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: impo ...

  9. tensorflow学习笔记-bili莫烦

    bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as ...

随机推荐

  1. 剑指Offer-1.二维数组中的查找(C++/Java)

    题目: 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. ...

  2. AtCoder Beginner Contest 147

    A - Blackjack #include <bits/stdc++.h> int main() { int a, b, c; scanf("%d%d%d", &am ...

  3. Nginx Rewrite域名及资源重定向

    一.正则匹配     1.匹配规则         ^$  标识符匹配后面跟-一个字符串.匹配字符串后将停止对后续的正则表达式进行匹配,如location ^~/images/,在匹配了/images ...

  4. flutter,SliverPersistentHeader实现Tab顶部吸附固定效果

    直接上代码啦 import 'package:flutter/material.dart'; class StickyDemo extends StatefulWidget { @override _ ...

  5. 面试被问怎么排查平时遇到的系统CPU飙高和频繁GC,该怎么回答?

    处理过线上问题的同学基本上都会遇到系统突然运行缓慢,CPU 100%,以及Full GC次数过多的问题.当然,这些问题的最终导致的直观现象就是系统运行缓慢,并且有大量的报警.本文主要针对系统运行缓慢这 ...

  6. 改善java程序的151个建议

    <编写高质量代码-改善java程序的151个建议> --秦小波 第一章.开发中通用的方法和准则 1.不要在常量和变量中出现易混淆的字母 long a=0l; --> long a=0 ...

  7. liunx下安装mysql-5.7.25-linux-glibc2.12-x86_64.tar.gz

    1.解压准备一个赶紧的环境,然后安装mysql. 2.cd到/usr/local/目录下,修改文件名为mysql 修改完目录名以后我们cd到mysql下,建立一个data目录命令:cd mysql/ ...

  8. Eureka服务注册中心错误:com.sun.jersey.api.client.ClientHandlerException: java.net.ConnectException: Connection refused: connect

    报错信息 14:43:45.484 [main] INFO com.netflix.discovery.DiscoveryClient - Getting all instance registry ...

  9. 如何在 Knative 中部署 WebSocket 和 gRPC 服务?

    作者 | 冬岛  阿里云容器平台工程师 导读:虽然说 Knative 默认就支持 WebSocket 和 gRPC,但在使用中会发现,有时想要把自己的 WebSocket 或 gRPC 部署到 Kna ...

  10. 【Easyexcel】java导入导出超大数据量的xlsx文件 解决方法

    解决方法: 使用easyexcel解决超大数据量的导入导出xlsx文件 easyexcel最大支持行数 1048576. 官网地址: https://alibaba-easyexcel.github. ...