【JOISC2018|2019】【20190622】minerals
题目
交互题
有\(2n\)个物品,编号为\(1-2n\),存在唯一的两两配对关系,即有\(n\)种物品
有一个盒子,初始为空,盒子上会显示里面存在的物品种类数\(C\)
你每次操作可以将一个物品从盒子里拿出或者放入盒子
$n \le 43000 $,次数限制\(10^6\)
题解
首先依次加入所有物品,考虑C变和不变可以将物品分成两个对应的集合AB
在盒子里保留A的一半,依次改变B的状态,考虑C变和不变可以将B继续分成对应的两个集合
交换AB,一直分治下去,复杂度大约是\(O(3.5N+2NlogN)\)
然而这题最优秀的一点在于后面(图片来自官解):
我们假设分治部分的次数复杂度为\(f(N) = tN \ logN\) ,设每次分治的两部分之比为p : 1 - p
(求导)求极值点:
那 p 就一反套路地取0.382好了
#include "minerals.h"
#include<bits/stdc++.h>
#define K 0.38 using namespace std; const int maxN=43010;
int n,P[maxN],Q[maxN],vis[maxN<<1];
int pl[maxN],pr[maxN],ql[maxN],qr[maxN]; bool query(int x){
static int now,lst,re;
vis[x]^=1;now=Query(x);
re=(now!=lst);lst=now;
return re;
} void Swap(int l1,int r1){
static int tmp[maxN];
for(int i=1;i<=l1;++i)tmp[i]=pl[i];
for(int i=1;i<=r1;++i)pl[i]=pr[i];
for(int i=1;i<=l1;++i)pr[i]=tmp[i];
}//直接swap两个指针的话似乎会把指向的数组全部交换 void solve(int*p,int*q,int len){
if(len==1){
Answer(p[1],q[1]);
return;
}
int l1,r1,l2,r2;
l1=r1=l2=r2=0;
for(int i=1;i<=len;++i){
if(vis[p[i]])pl[++l1]=p[i];
else pr[++r1]=p[i];
}
if(l1>r1)Swap(l1,r1),swap(l1,r1);
int base=max(1,(int)(K*len));
while(l1<base)query(pr[r1]),pl[++l1]=pr[r1--];
while(l1>base)query(pl[l1]),pr[++r1]=pl[l1--];
if(vis[pl[1]])Swap(l1,r1),swap(l1,r1);
for(int i=1;i<=len;++i)if(query(q[i])){
ql[++l2]=q[i];
if(l2==l1){for(++i;i<=len;++i)qr[++r2]=q[i];}
} else{
qr[++r2]=q[i];
if(r2==r1){for(++i;i<=len;++i)ql[++l2]=q[i];}
}
for(int i=1;i<=l1;++i)p[i]=pl[i];
for(int i=1;i<=l2;++i)q[i]=ql[i];
for(int i=1;i<=r1;++i)p[i+l1]=pr[i];
for(int i=1;i<=r2;++i)q[i+l2]=qr[i];
solve(q,p,l1);
solve(q+l1,p+l1,r1);
} void Solve(int N) {
n=N;
int cnt1=0,cnt2=0;
for(int i=1;i<=2*n;++i){
if(query(i))P[++cnt1]=i;
else Q[++cnt2]=i;
}
solve(P,Q,n);
}
//一道非常有意思的交互题
//20190622
【JOISC2018|2019】【20190622】minerals的更多相关文章
- 【JOISC2018|2019】【20190622】mergers
题目 一\(n\)个节点的树,节点被分成\(k\)个集合,\(i\)属于\(S_i\), 一条边是可划分的当且仅当左右两边的子树不存在相同集合的点 你一次可以合并两个集合,求最少的操作次数使得所有边都 ...
- 【FJWC 2019】 森林
[FJWC 2019] 森林 样例输入 0 5 1 0 0 2 样例输出 1 2 3 3 我们发现,答案就是直径加上直径上某个点出发,不经过其他直径上的点的最长链.这里的直径可以是任意一条直径. 首先 ...
- 【FJWC 2019】min
[FJWC 2019]min 题目描述 给你一张 \(n\) 个点 \(m\) 条边的无向图,走过每条边都需要花费 \(1\) 秒. 给你一个整数 \(k\) ,请你选择至多 \(k\) 个点,令经过 ...
- IT帮2019年2月线下活动【定义工作,解读自我】之站桩练习
2019年2月IT帮线下活动[定义工作,解读自我] 昨天的活动收获很大,全面的总结周老师会另写一篇来帮助大家回顾.我想说一下其中最打动我的一句话:“只有你能决定你有多优秀!” “工作中把自己当成企业家 ...
- 【Linux】【Apatch Tomcat】Linux、CentOS7安装最新版Apartch Tomcat环境
1.前言 相当嫌弃,博客园搞掉了我快写完的 Tomcat. 请先安装 :[Linux][Java]CentOS7安装最新版Java1.8.191运行开发环境 虽然安装Tomcat没啥技术,但是还是记录 ...
- 【Python】【装饰器】
Python中的装饰器是你进入Python大门的一道坎,不管你跨不跨过去它都在那里. 为什么需要装饰器 我们假设你的程序实现了say_hello()和say_goodbye()两个函数. def sa ...
- 【转载】【Pycharm编辑器破解步骤】之idea和Pycharm 等系列产品激活激活方法和激活码(附:Mac系统)
感谢:雪中皓月的<idea和Pycharm 等系列产品激活激活方法和激活码> 第一种方法:使用现有的注册服务器 优点:快捷,方便,省事 缺点:经常被封杀,可能会面临经常激活的困扰 Lice ...
- 【北京/上海/南京】【部门直推】【可查询】【实习&社招】字节跳动数据平台前端内推
[北京/上海/南京][部门直推][可查询][实习&社招]字节跳动数据平台前端内推 重要信息,写在前面 [投递邮箱]chengxinsong@bytedance.com [微信扫码] 2019 ...
- 【Robot Framework 项目实战 04】基于录制,生成RF关键字及 自动化用例
背景 因为服务的迁移,Jira版本的更新,很多接口文档的维护变少,导致想要编写部分服务的自动化测试变得尤为麻烦,很多服务,尤其是客户端接口需要通过抓包的方式查询参数来编写自动化用例,但是过程中手工重复 ...
随机推荐
- C# vb .net图像合成-合成文字
在.net中,如何简单快捷地实现图像合成呢,比如合成文字,合成艺术字,多张图片叠加合成等等?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码 ...
- sqlserver还原差异备份
因为之前遇到还原差异备份,最开始遇到SQLServer报错:"无法还原日志备份或差异备份,因为没有文件可用于前滚".查阅很多资料后,终于得到解决.收集整理成这篇随笔. 问题原因:出 ...
- Q-Q图和P-P图
一. QQ图 分位数图示法(Quantile Quantile Plot,简称 Q-Q 图) 统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们 ...
- 2019 浪潮java面试笔试题 (含面试题解析)
本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.浪潮等公司offer,岗位是Java后端开发,因为发展原因最终选择去了浪潮,入职一年时间了,之前面试了很多家公 ...
- python入学代码
liwenhu=100 if liwenhu>=90: print("你很棒") elif liwenhu>=80: print("你很不错") e ...
- 安装VMware14可能出现的问题
未能提取文件 安装程序未能提取安装vmware workstation所必须的文件 在没有关闭这个弹框的前提下,Win+R输入%temp%,找到以~setup结尾的文件夹,双击下面的临时文件VMwar ...
- 【开发工具】- Java开发必知工具
压力测试工具_JMeter 作用 1.能够对HTTP和FTP服务器进行压力和性能测试, 也可以对任何数据库进行同样的测试(通过JDBC). 2.完全的可移植性和100% 纯java. 3.完全 Swi ...
- PHP实现智能语音播报
原文地址 https://www.jianshu.com/p/91a046ec6ebc 大家估计都知道现在很多AI音响能够给你播报天气,叫你起床...甚至能够接受语音指令!所谓的人工智能音响,听起来很 ...
- 【python】udp 数据的发送和接收
import socket def send_message(): # 创建一个udp套接字 udp_socker = socket.socket(socket.AF_INET,socket.SOCK ...
- golang中逗号ok模式_转
,ok,第一个参数是一个值或者nil,第二个参数是true/false或者一个错误error.在一个需要赋值的if条件语句中,使用这种模式去检测第二个参数值会让代码显得优雅简洁.这种模式在go语言编码 ...