P1351 联合权值

题目描述

无向连通图 \(G\) 有 \(n\) 个点,\(n-1\) 条边。点从 \(1\) 到 \(n\) 依次编号,编号为 \(i\) 的点的权值为 \(W_i\)​,每条边的长度均为 \(1\)。图上两点 \((u, v)\) 的距离定义为 \(u\) 点到 \(v\) 点的最短距离。对于图 \(G\) 上的点对 \((u, v)\),若它们的距离为 \(2\),则它们之间会产生\(W_v \times W_u\)​ 的联合权值。

请问图 \(G\) 上所有可产生联合权值的有序点对中,联合权值最大的是多少?所有联合权值之和是多少?

输入格式

第一行包含 \(1\) 个整数 \(n\)。

接下来 \(n-1\) 行,每行包含 \(2\) 个用空格隔开的正整数 \(u,v\),表示编号为 \(u\) 和编号为 \(v\) 的点之间有边相连。

最后 \(1\) 行,包含 \(n\) 个正整数,每两个正整数之间用一个空格隔开,其中第 \(i\) 个整数表示图 \(G\) 上编号为 \(i\) 的点的权值为 \(W_i\)​。

输出格式

输出共 \(1\) 行,包含 \(2\) 个整数,之间用一个空格隔开,依次为图 \(G\) 上联合权值的最大值和所有联合权值之和。由于所有联合权值之和可能很大,输出它时要对\(10007\)取余。

输入输出样例

输入 #1

5

1 2

2 3

3 4

4 5

1 5 2 3 10

输出 #1

20 74

说明/提示

本例输入的图如上所示,距离为2 的有序点对有\(( 1,3)\) 、\(( 2,4)\) 、\(( 3,1)\) 、\(( 3,5)\)、\(( 4,2)\) 、\(( 5,3)\)。

其联合权值分别为2 、15、2 、20、15、20。其中最大的是20,总和为74。

【数据说明】

对于30%的数据,\(1 < n \leq 100\);

对于60%的数据,\(1 < n \leq 2000\);

对于100%的数据,\(1 < n \leq 200000, 0 < W_i \leq 10000\)。

保证一定存在可产生联合权值的有序点对。

【思路】

树上问题 + dfs

一开始没往树上操作这个地方想就想打个暴力搜索那点部分分

然后发现暴搜是很麻烦的,好像是没法处理类似菊花图的图形

所以只能上树

可以分为两个部分第一个部分先预处理出每一个点对应的长度为1的菊花图里面的最大值和最大值的位置,同时也求出

这个点对应的菊花图里面所有子节点的和

因为后面求总和的时候可以用一个点的值乘以这个菊花图的总和减去那个点的值

然后再来一个dfs

先处理处不是菊花图也就是直上直下不拐弯的那种可能出现的情况也暴力比较找最大值

然后再枚举菊花图,比较里面哪一个除了最大点的点和最大的的乘积最大

也就是找出次大点记录,同时求和,就用上面的方法就可以了

【完整代码】

#include<iostream>
#include<cstdio>
#include<vector> using namespace std;
const int Max = 2e5 + 10;
const int mo = 1e4 + 7;
int a[Max];
int father[Max];
int maxw[Max],maxv[Max];//某个点对应的子节点里面的最大值和最大值的位置
int sum[Max];//某个点对应的子节点之和
vector<int>e[Max];
int n;
int ans1,ans2; void dfs1(int x,int fa)
{
for(int i = 0;i < e[x].size();i ++)
{
if(e[x][i] != fa)
{
if(a[e[x][i]] > maxw[x])
maxw[x] = a[e[x][i]],maxv[x] = e[x][i];
sum[x] = (sum[x] + a[e[x][i]]) % mo;
dfs1(e[x][i],x);
}
}
} void dfs2(int x,int fa)
{
father[x] = fa;
if(father[father[x]] != 0)
{
ans1 = max(ans1,a[father[father[x]]] * a[x]);
ans2 = (ans2 + 2 * a[x] * a[father[father[x]]]) % mo;
}
for(int i = 0;i < e[x].size();i ++)
{
if(e[x][i] != fa)
{
if(e[x][i] != maxv[x])ans1 = max(ans1,a[e[x][i]] * maxw[x]);
ans2 = (ans2 + a[e[x][i]] * (sum[x] - a[e[x][i]])) % mo;
dfs2(e[x][i],x);
}
}
} int main()
{
// freopen("2","r",stdin);
int x,y;
scanf("%d",&n);
// for(int i = 1;i <= n;++ i)
// father[i] = i;
for(int i = 1;i < n;++ i)
{
scanf("%d%d",&x,&y);
e[x].push_back(y);
e[y].push_back(x);
}
for(int i = 1;i <= n;++ i)
scanf("%d",&a[i]);
dfs1(1,0);
dfs2(1,0);
cout<<ans1<<" "<<ans2 % mo<<endl;
return 0;
}

洛谷 P1351 联合权值 题解的更多相关文章

  1. 『题解』洛谷P1351 联合权值

    更好的阅读体验 Portal Portal1: Luogu Portal2: LibreOJ Description 无向连通图\(\mathrm G\)有\(n\)个点,\(n - 1\)条边.点从 ...

  2. [NOIP2014] 提高组 洛谷P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  3. 洛谷 P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...

  4. 洛谷——P1351 联合权值

    https://www.luogu.org/problem/show?pid=1351 题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i , ...

  5. 洛谷P1351 联合权值(树形dp)

    题意 题目链接 Sol 一道很简单的树形dp,然而被我写的这么长 分别记录下距离为\(1/2\)的点数,权值和,最大值.以及相邻儿子之间的贡献. 树形dp一波.. #include<bits/s ...

  6. 洛谷 P1351 联合权值 —— 树形DP

    题目:https://www.luogu.org/problemnew/show/P1351 树形DP,别忘了子树之间的情况(拐一下距离为2). 代码如下: #include<iostream& ...

  7. 洛谷P1351 联合权值

    \(\Large\textbf{Description:}\) \(\large一棵树,父子之间距离为1,求距离为2的两点点权之积的最大值与和.\) \(\Large\textbf{Solution: ...

  8. Luogu P1351 联合权值 题解

    这是一个不错的树形结构的题,由于本蒟蒻不会推什么神奇的公式其实是懒得推...,所以很愉快的发现其实只需要两个点之间的关系为祖父和儿子.或者是兄弟即可. 然后问题就变得很简单了,只需要做一个正常的DFS ...

  9. 洛谷 1351 联合权值——树形dp

    题目:https://www.luogu.org/problemnew/show/P1351 对拍了一下,才发现自己漏掉了那种拐弯的情况. #include<iostream> #incl ...

随机推荐

  1. 九校联考-DL24凉心模拟Day2总结

    T1 锻造 forging 题目描述 "欢迎啊,老朋友." 一阵寒暄过后,厂长带他们参观了厂子四周,并给他们讲锻造的流程. "我们这里的武器分成若干的等级,等级越高武器就 ...

  2. 原!!Spring redis的Scan的坑,慎用!

    线上发现有机器,在发生某块业务大量请求时,后面就没有日志了,查看线程状态,如图1,发现很多线程被阻塞了,查看代码发现,用到了scan,如图2,百度之后,发现该操作不会自动释放redis连接,导致red ...

  3. 关于ElasticSearch的堆内存设置与优化

    1.什么是堆内存?Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象.在 Java 中,堆被划分成两个不同的区域:- 新生代 ( Young ).- 老年代 ( Ol ...

  4. Java核心技术梳理-类加载机制与反射

    一.引言 反射机制是一个非常好用的机制,C#和Java中都有反射,反射机制简单来说就是在程序运行状态时,对于任意一个类,能够知道这个类的所有属性和方法,对于任意一个对象,能够调用它的任意属性和方法,其 ...

  5. oracle 数据库触发器,插入更新时间戳

    1.首先建立一个测试表 CREATE TABLE TestTragger( UserId int Primary Key, Name VARCHAR() Not Null, CreateTime Ti ...

  6. 实战Go内存泄露【转】

    最近解决了我们项目中的一个内存泄露问题,事实再次证明pprof是一个好工具,但掌握好工具的正确用法,才能发挥好工具的威力,不然就算你手里有屠龙刀,也成不了天下第一,本文就是带你用pprof定位内存泄露 ...

  7. ES6数组方法总结

    关于数组中forEach() .map().filter().reduce().some().every()的总结 1. forEach() let array = [1,2,3,4]; array. ...

  8. Android Studio 打包生成apk

    打开AndroidStudio,并且打开想要生成apk文件的项目  点击工具栏上面的“Builder”  点击“Builder”之后在下拉菜单里面可以看到“Genarate Singed APK”,点 ...

  9. 个人项目(JAVA实现)

    一:Github项目地址:https://github.com/candy07213/WC 二:PSP表格 PSP2.1 Personal Software Process Stages 预估耗时(分 ...

  10. 在DoNetMVC中使用控制反转和依赖注入【DI】

    本次是在MVC5中使用Autofac 第一步:程序包管理器控制台 Install-Package Autofac.MVC5 引入nuget包 这样成功之后,会在引用中出现两个DLL,分别是Autofa ...