[PA2012]Dwa torty

题目大意:

给定两个排列\(A_{1\sim n},B_{1\sim n}\),你需要将两个排列用最少的次数消除。

消除只能从头消除,一次消除可以从两个排列的头部取两个不同的数消去,或者从一个排列头部取一个数消去。

问最少的消除次数。

\(n\le10^6\)

思路:

\(f[i][j]\)表示已经取了\(A_{1\sim i}\)和\(B_{1\sim j}\)所需的最小代价。

\(A_i=B_j\)时,\(f[i][j]=\min(f[i-1][j],f[j-1][i])+1\)。

\(A_i\ne B_j\)时,令\(t\)为使得\(A_{i-t}=B_{j-t}\)的最小的\(t\),则\(f[i][j]=f[i-t][j-t]+t\)。

将\(A_i=B_j\)的状态进行记忆化,\(A_i\ne B_j\)的状态可以在\(\mathcal O(\log n)\)的时间内转移到\(A_i=B_j\)的状态。

\(A_i=B_j\)的状态总共有\(n\)个,则至多需要\(2n\)个\(A_i\ne B_j\)的状态。因此时间复杂度\(\mathcal O(n\log n)\)。

源代码:

#include<set>
#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e6+1;
int a[N],b[N],p[N],f[N];
std::set<std::pair<int,int>> set;
int dp(const int &p,const int &q) {
if(!p||!q) return p+q;
if(a[p]==b[q]) return f[p]=f[p]?:std::min(dp(p,q-1),dp(p-1,q))+1;
const auto k=std::prev(set.upper_bound(std::make_pair(p-q,p)));
if(k->first!=p-q) return std::max(p,q);
const int r=k->second;
return dp(r,r-p+q)+p-r;
}
int main() {
const int n=getint();
for(register int i=1;i<=n;i++) a[i]=getint();
for(register int i=1;i<=n;i++) b[i]=getint();
for(register int i=1;i<=n;i++) p[a[i]]=i;
set.insert(std::make_pair(-n,0));
for(register int i=0;i<=n;i++) {
set.insert(std::make_pair(p[b[i]]-i,p[b[i]]));
}
printf("%d\n",dp(n,n));
return 0;
}

[PA2012]Dwa torty的更多相关文章

  1. ROS知识(14)----局部避障的动态窗口算法(DWA)及其调试的方法

    Dynamic Window Approach(DWA)是重要的局部轨迹规划算法,ROS中使用了DWA算法获得了很好的局部路径规划的效果.具体的教程可参考官方的导航调试资料Navigation Tun ...

  2. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  3. 【BZOJ3502/2288】PA2012 Tanie linie/【POJ Challenge】生日礼物 堆+链表(模拟费用流)

    [BZOJ3502]PA2012 Tanie linie Description n个数字,求不相交的总和最大的最多k个连续子序列. 1<= k<= N<= 1000000. Sam ...

  4. [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec  Memo ...

  5. ros局部路径规划-DWA学习

    ROS的路径规划器分为全局路径和局部路径规划,其中局部路径规划器使用的最广的为dwa,个人理解为: 首先全局路径规划会生成一条大致的全局路径,局部路径规划器会把全局路径给分段,然后根据分段的全局路径的 ...

  6. DWA局部路径规划算法论文阅读:The Dynamic Window Approach to Collision Avoidance。

    DWA(动态窗口)算法是用于局部路径规划的算法,已经在ROS中实现,在move_base堆栈中:http://wiki.ros.org/dwa_local_planner DWA算法第一次提出应该是1 ...

  7. BZOJ3072 : [Pa2012]Two Cakes

    考虑DP,设$f[i][j]$表示考虑了$a[1..i]$和$b[1..j]$的最小代价. 若$a[i]==b[j]$,则$f[i][j]=\min(f[i-1][j],f[i][j-1])+1$. ...

  8. BZOJ4289 : PA2012 Tax

    一个直观的想法是把每条边拆成两条有向边,同时每条有向边是新图中的一个点.对于两条边a->b与b->c,两点之间连有向边,费用为两条边费用的最大值.然后新建源点S与汇点T,由S向所有起点为1 ...

  9. bzoj 4289: PA2012 Tax

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

随机推荐

  1. volatile 作用

    volatile使用场景:线程间共享变量需要使用 volatile 关键字标记,确保线程能够读取到更新后的最新变量值. volatile关键字的目的是告诉虚拟机: 1.每次访问变量时,总是获取主内存的 ...

  2. (转).Net Core控制台生成exe能独立运行

    原文介绍了两种方式,方式一经测试可用(生成exe在开发机器上可运行),但是因为服务器是windows server2012 r2,没有安装补丁,造成了困难,尚未在服务器上运行成功. (提示 api-m ...

  3. 简单计算器设计(WPF)

    要求: 文本框居中,用户不能修改运算结果 当用户选择不同的运算类型时 下方GroupBox的标题与所选运算类型相对应 且文本框数字立即清空 单击[计算]按钮时 如果文本框输入的内容非法 结果文本框显示 ...

  4. 将windows共享文件夹挂载到Linux

    今天想用docker部署下 .net core的 服务,需要把代码文件从windows传到linux,以前一直都是拖拽的,这次安装的系统没有图形界面, 所以到网上找到了下面的这种方法,将共享文件夹挂载 ...

  5. CSS-锚点笔记

    注意点: position属性 定义建议元素布局所用的定位机制 {position:static/absolute/relative/fixed;} static:默认值,没有定位 absolute: ...

  6. Spring框架的核心概念是什么?需要掌握的知识点都有哪些?

    Spring其主要精髓 就是IOC和AOP.掌握好了这两点对于理解Spring的思想颇有意义. IOC(英文 Inversion of Control)就是控制反转的意思.就是把新建对象(new Ob ...

  7. idea忽略并隐藏.idea文件夹.iml文件不提交到svn

    File-->setting-->Editor-->File Types 选中.boringignore,添加*.iml;.idea;即可

  8. git 命令行操作(之前整理在有道的笔记)

    1. 常用命令 切换分支 git checkout [branch_name] 检出分支 git clone [git_URL] 更新分支 git pull origin [branch_name] ...

  9. 【Code Tools】AB性能测试工具(二)

    一.测试Get请求 1.每次并发请求10个,总共1000个请求 ab -n -c https://www.baidu.com/ 2.指定Header参数 通过-H来指定 ab -n -c -H 'Ac ...

  10. python自动化测试框架

    一.环境准备 1.python开发环境, python3.7 2.setuptools基础工具包 3.pip安装包管理工具 4.selenium自动化测试工具  chrom驱动下载地址: http:/ ...