[PA2012]Dwa torty

题目大意:

给定两个排列\(A_{1\sim n},B_{1\sim n}\),你需要将两个排列用最少的次数消除。

消除只能从头消除,一次消除可以从两个排列的头部取两个不同的数消去,或者从一个排列头部取一个数消去。

问最少的消除次数。

\(n\le10^6\)

思路:

\(f[i][j]\)表示已经取了\(A_{1\sim i}\)和\(B_{1\sim j}\)所需的最小代价。

\(A_i=B_j\)时,\(f[i][j]=\min(f[i-1][j],f[j-1][i])+1\)。

\(A_i\ne B_j\)时,令\(t\)为使得\(A_{i-t}=B_{j-t}\)的最小的\(t\),则\(f[i][j]=f[i-t][j-t]+t\)。

将\(A_i=B_j\)的状态进行记忆化,\(A_i\ne B_j\)的状态可以在\(\mathcal O(\log n)\)的时间内转移到\(A_i=B_j\)的状态。

\(A_i=B_j\)的状态总共有\(n\)个,则至多需要\(2n\)个\(A_i\ne B_j\)的状态。因此时间复杂度\(\mathcal O(n\log n)\)。

源代码:

#include<set>
#include<cstdio>
#include<cctype>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e6+1;
int a[N],b[N],p[N],f[N];
std::set<std::pair<int,int>> set;
int dp(const int &p,const int &q) {
if(!p||!q) return p+q;
if(a[p]==b[q]) return f[p]=f[p]?:std::min(dp(p,q-1),dp(p-1,q))+1;
const auto k=std::prev(set.upper_bound(std::make_pair(p-q,p)));
if(k->first!=p-q) return std::max(p,q);
const int r=k->second;
return dp(r,r-p+q)+p-r;
}
int main() {
const int n=getint();
for(register int i=1;i<=n;i++) a[i]=getint();
for(register int i=1;i<=n;i++) b[i]=getint();
for(register int i=1;i<=n;i++) p[a[i]]=i;
set.insert(std::make_pair(-n,0));
for(register int i=0;i<=n;i++) {
set.insert(std::make_pair(p[b[i]]-i,p[b[i]]));
}
printf("%d\n",dp(n,n));
return 0;
}

[PA2012]Dwa torty的更多相关文章

  1. ROS知识(14)----局部避障的动态窗口算法(DWA)及其调试的方法

    Dynamic Window Approach(DWA)是重要的局部轨迹规划算法,ROS中使用了DWA算法获得了很好的局部路径规划的效果.具体的教程可参考官方的导航调试资料Navigation Tun ...

  2. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  3. 【BZOJ3502/2288】PA2012 Tanie linie/【POJ Challenge】生日礼物 堆+链表(模拟费用流)

    [BZOJ3502]PA2012 Tanie linie Description n个数字,求不相交的总和最大的最多k个连续子序列. 1<= k<= N<= 1000000. Sam ...

  4. [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec  Memo ...

  5. ros局部路径规划-DWA学习

    ROS的路径规划器分为全局路径和局部路径规划,其中局部路径规划器使用的最广的为dwa,个人理解为: 首先全局路径规划会生成一条大致的全局路径,局部路径规划器会把全局路径给分段,然后根据分段的全局路径的 ...

  6. DWA局部路径规划算法论文阅读:The Dynamic Window Approach to Collision Avoidance。

    DWA(动态窗口)算法是用于局部路径规划的算法,已经在ROS中实现,在move_base堆栈中:http://wiki.ros.org/dwa_local_planner DWA算法第一次提出应该是1 ...

  7. BZOJ3072 : [Pa2012]Two Cakes

    考虑DP,设$f[i][j]$表示考虑了$a[1..i]$和$b[1..j]$的最小代价. 若$a[i]==b[j]$,则$f[i][j]=\min(f[i-1][j],f[i][j-1])+1$. ...

  8. BZOJ4289 : PA2012 Tax

    一个直观的想法是把每条边拆成两条有向边,同时每条有向边是新图中的一个点.对于两条边a->b与b->c,两点之间连有向边,费用为两条边费用的最大值.然后新建源点S与汇点T,由S向所有起点为1 ...

  9. bzoj 4289: PA2012 Tax

    Description 给出一个N个点M条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点1到点N的最小代价.起点的代价是离开起点的边的边权,终点的代价是进入终点的边的边 ...

随机推荐

  1. springboot使用HttpSessionListener 监听器统计当前在线人数

    概括: request.getSession(true):若存在会话则返回该会话,否则新建一个会话. request.getSession(false):若存在会话则返回该会话,否则返回NULL ht ...

  2. Delphi中AssignFile函数

    procedure TForm1.SaveLog(sFlag:string;MSG:string);var QF1:Textfile;         ----声明文本文件类型 Qfiletmp,sP ...

  3. Docker/Dockerfile debug调试技巧

    『重用』容器名 但我们在编写/调试Dockerfile的时候我们经常会重复之前的command,比如这种docker run --name jstorm-zookeeper zookeeper:3.4 ...

  4. 2019 唯品会java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.唯品会等公司offer,岗位是Java后端开发,因为发展原因最终选择去了唯品会,入职一年时间了,也成为了面试官 ...

  5. 详细介绍:Kubernetes1.4版本的新功能

    Kubernetes1.4主要新特性 创建kubernetes集群只需要两条命令 增强了对有状态应用的支持 增加了集群联盟API 支持容器安全控制 增强包括调度在内的Kubernetes基础架构 通过 ...

  6. 2019-07-24 Smarty模板引擎的简单应用

    smarty是什么? Smarty是一个使用PHP写出来的模板引擎,是业界最著名的PHP模板引擎之一.Smarty分离了逻辑代码和外在的内容,提供一种易于管理和使用的方法,用来将原本与HTML代码混杂 ...

  7. pandas-03 DataFrame()中的iloc和loc用法

    pandas-03 DataFrame()中的iloc和loc用法 简单的说: iloc,即index locate 用index索引进行定位,所以参数是整型,如:df.iloc[10:20, 3:5 ...

  8. 【转载】C#中List集合使用Max()方法查找到最大值

    在C#的List集合操作中,有时候需要查找到List集合中的最大值,此时可以使用List集合的扩展方法Max方法,Max方法有2种形式,一种是不带任何参数的形式,适用于一些值类型变量的List集合,另 ...

  9. jq+swiper 实现今日头条App的选项卡效果

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  10. SAP Hybris Commerce启用customer coupon的前提条件

    今天在工作中,我发现一个问题:在SAP帮助文档里,backoffice coupon 维护界面有个 Customer Assignment的区域: 而我工作的Hybris服务器上的backoffice ...