有一棵树,共有 $N$ 个节点,他会使用下列 $DFS$ 算法对该树进行遍历:

starting_time是一个容量为n的数组
current_time = 0
dfs(v):
current_time =current_time+1
starting_time[v] = current_time
将children[v]的顺序随机排列 (每个排列的概率相同)
// children[v]v的直接儿子组成的数组
for u in children[v]:
dfs(u)

1是这棵树的根,Bob会从1出发,即运行dfs(1),现在他想知道每个点 starting_time的期望值

令 $f[i]$ 表示访问到 $i$ 时的期望时间.

那么,如果说直接由 $i$ 的父亲到 $i$ 的话,$f[i]=f[fa]+1$

但是,$fa$ 的儿子中除了 $i$ 都有可能在 $i$ 之前访问.

这个概率为 $\frac{1}{2}$ 即之前/之后.

所以,$f[i]=f[fa]+1+\frac{size[fa]-size[i]-1}{2}$

#include <bits/stdc++.h>
#define N 100005
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
int n,edges;
double f[N];
int hd[N],to[N<<1],nex[N<<1],size[N];
void add(int u,int v)
{
nex[++edges]=hd[u],hd[u]=edges,to[edges]=v;
}
void dfs1(int u,int ff)
{
size[u]=1;
for(int i=hd[u];i;i=nex[i]) dfs1(to[i],u), size[u]+=size[to[i]];
}
void dfs2(int u,int ff)
{
if(u!=1) f[u]=f[ff]+1.0+(double)(size[ff]-size[u]-1)/2.0;
for(int i=hd[u];i;i=nex[i]) dfs2(to[i],u);
}
int main()
{
// setIO("input");
int i,j;
scanf("%d",&n);
for(i=2;i<=n;++i)
{
int ff;
scanf("%d",&ff), add(ff,i);
}
dfs1(1,0);
f[1]=1.0;
dfs2(1,0);
for(i=1;i<=n;++i) printf("%.1lf ",f[i]);
return 0;
}

  

CF696B Puzzles 概率期望的更多相关文章

  1. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  2. uvalive 7331 Hovering Hornet 半平面交+概率期望

    题意:一个骰子在一个人正方形内,蜜蜂在任意一个位置可以出现,问看到点数的期望. 思路:半平面交+概率期望 #include<cstdio> #include<cstring> ...

  3. OI队内测试一【数论概率期望】

    版权声明:未经本人允许,擅自转载,一旦发现将严肃处理,情节严重者,将追究法律责任! 序:代码部分待更[因为在家写博客,代码保存在机房] 测试分数:110 本应分数:160 改完分数:200 T1: 题 ...

  4. 2016 多校联赛7 Balls and Boxes(概率期望)

    Mr. Chopsticks is interested in random phenomena, and he conducts an experiment to study randomness. ...

  5. 牛客网多校赛第9场 E-Music Game【概率期望】【逆元】

    链接:https://www.nowcoder.com/acm/contest/147/E 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...

  6. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  7. [LnOI2019]加特林轮盘赌(DP,概率期望)

    [LnOI2019]加特林轮盘赌(DP,概率期望) 题目链接 题解: 首先特判掉\(p=0/1\)的情况... 先考虑如果\(k=1\)怎么做到\(n^2\)的时间复杂度 设\(f[i]\)表示有\( ...

  8. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  9. bzoj 2969: 矩形粉刷 概率期望

    题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...

随机推荐

  1. 使用 Angular RouteReuseStrategy 缓存(路由)组件

    使用 Angular RouteReuseStrategy 缓存组件 Cache components with Angular RouteReuseStrategy RouteReuseStrate ...

  2. 【LEETCODE】55、数组分类,适中级别,题目:79、611、950

    第950题,这题我是真的没想到居然会说使用队列去做,大神的答案,拿过来瞻仰一下 package y2019.Algorithm.array; import java.util.HashMap; imp ...

  3. 字符串类型日期时间转换为Date类型解析转换异常java.text.ParseException: Unparseable date: “2019-09-27T18:31:31+08:00”

    错误的写法: SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); //这里的格式也可以是别 ...

  4. [高清] 深入浅出Spring Boot 2.x.pdf + 代码

    ------ 郑重声明 --------- 资源来自网络,纯粹共享交流, 如果喜欢,请您务必支持正版!! --------------------------------------------- 下 ...

  5. FreeMarker 教程整理

    Freemarker新手教程 http://blog.csdn.net/qq_23994787/article/details/77506980   FreeMarker教程整理 http://blo ...

  6. iOS - xcode经常报的经典error解决办法大全

    1.错误信息: 2015-10-28 10:39:55.933 XFW[2696:55982] *** Assertion failure in -[UITableView _configureCel ...

  7. Jenkins的语法之pipeline

    如果不处理,pipeline:stages中任一stage失败,都会致使其以下stage都失败,那么处理方式为: 1.stage在可能出错的地方添加try catch语句 如:try{} catch( ...

  8. [AIR] NativeExtension在IOS下的开发实例 --- ANE文件的打包(三)

    来源:http://bbs.9ria.com/thread-102041-1-1.html 好了,前面的准备工作做的差不多了.此时我们应用有下面几个文件:extension.xml    CoolEx ...

  9. minhash pyspark 源码分析——hash join table是关键

    从下面分析可以看出,是先做了hash计算,然后使用hash join table来讲hash值相等的数据合并在一起.然后再使用udf计算距离,最后再filter出满足阈值的数据: 参考:https:/ ...

  10. linux系统编程之文件与io(一)

    经过了漫长的学习,C语言相关的的基础知识算是告一段落了,这也是尝试用写博客的形式来学习c语言,回过头来看,虽说可能写的内容有些比较简单,但是个人感觉是有史起来学习最踏实的一次,因为里面的每个实验都是自 ...