There are N network nodes, labelled 1 to N.

Given times, a list of travel times as directededges times[i] = (u, v, w), where u is the source node, v is the target node, and w is the time it takes for a signal to travel from source to target.

Now, we send a signal from a certain node K. How long will it take for all nodes to receive the signal? If it is impossible, return -1.

Example 1:

Input: times = [[2,1,1],[2,3,1],[3,4,1]], N = 4, K = 2
Output: 2

Note:

  1. N will be in the range [1, 100].
  2. K will be in the range [1, N].
  3. The length of times will be in the range [1, 6000].
  4. All edges times[i] = (u, v, w) will have 1 <= u, v <= N and 0 <= w <= 100.

这道题给了我们一些有向边,又给了一个结点K,问至少需要多少时间才能从K到达任何一个结点。这实际上是一个有向图求最短路径的问题,求出K点到每一个点到最短路径,然后取其中最大的一个就是需要的时间了。可以想成从结点K开始有水流向周围扩散,当水流到达最远的一个结点时,那么其他所有的结点一定已经流过水了。最短路径的常用解法有迪杰斯特拉算法 Dijkstra Algorithm, 弗洛伊德算法 Floyd-Warshall Algorithm, 和贝尔曼福特算法 Bellman-Ford Algorithm,其中,Floyd 算法是多源最短路径,即求任意点到任意点到最短路径,而 Dijkstra 算法和 Bellman-Ford 算法是单源最短路径,即单个点到任意点到最短路径。这里因为起点只有一个K,所以使用单源最短路径就行了。这三种算法还有一点不同,就是 Dijkstra 算法处理有向权重图时,权重必须为正,而另外两种可以处理负权重有向图,但是不能出现负环,所谓负环,就是权重均为负的环。为啥呢,这里要先引入松弛操作 Relaxtion,这是这三个算法的核心思想,当有对边 (u, v) 是结点u到结点v,如果 dist(v) > dist(u) + w(u, v),那么 dist(v) 就可以被更新,这是所有这些的算法的核心操作。Dijkstra 算法是以起点为中心,向外层层扩展,直到扩展到终点为止。根据这特性,用 BFS 来实现时再好不过了,注意 while 循环里的第一层 for 循环,这保证了每一层的结点先被处理完,才会进入进入下一层,这种特性在用 BFS 遍历迷宫统计步数的时候很重要。对于每一个结点,都跟其周围的结点进行 Relaxtion 操作,从而更新周围结点的距离值。为了防止重复比较,需要使用 visited 数组来记录已访问过的结点,最后在所有的最小路径中选最大的返回,注意,如果结果 res 为 INT_MAX,说明有些结点是无法到达的,返回 -1。普通的实现方法的时间复杂度为 O(V2),基于优先队列的实现方法的时间复杂度为 O(E + VlogV),其中V和E分别为结点和边的个数,这里多说一句,Dijkstra 算法这种类贪心算法的机制,使得其无法处理有负权重的最短距离,还好这道题的权重都是正数,参见代码如下:

解法一:

class Solution {
public:
int networkDelayTime(vector<vector<int>>& times, int N, int K) {
int res = ;
vector<vector<int>> edges(, vector<int>(, -));
queue<int> q{{K}};
vector<int> dist(N + , INT_MAX);
dist[K] = ;
for (auto e : times) edges[e[]][e[]] = e[];
while (!q.empty()) {
unordered_set<int> visited;
for (int i = q.size(); i > ; --i) {
int u = q.front(); q.pop();
for (int v = ; v <= ; ++v) {
if (edges[u][v] != - && dist[u] + edges[u][v] < dist[v]) {
if (!visited.count(v)) {
visited.insert(v);
q.push(v);
}
dist[v] = dist[u] + edges[u][v];
}
}
}
}
for (int i = ; i <= N; ++i) {
res = max(res, dist[i]);
}
return res == INT_MAX ? - : res;
}
};

下面来看基于 Bellman-Ford 算法的解法,时间复杂度是 O(VE),V和E分别是结点和边的个数。这种算法是基于 DP 来求全局最优解,原理是对图进行 V - 1 次松弛操作,这里的V是所有结点的个数(为啥是 V-1 次呢,因为最短路径最多只有 V-1 条边,所以只需循环 V-1 次),在重复计算中,使得每个结点的距离被不停的更新,直到获得最小的距离,这种设计方法融合了暴力搜索之美,写法简洁又不失优雅。之前提到了,Bellman-Ford 算法可以处理负权重的情况,但是不能有负环存在,一般形式的写法中最后一部分是检测负环的,如果存在负环则报错。不能有负环原因是,每转一圈,权重和都在减小,可以无限转,那么最后的最小距离都是负无穷,无意义了。没有负环的话,V-1 次循环后各点的最小距离应该已经收敛了,所以在检测负环时,就再循环一次,如果最小距离还能更新的话,就说明存在负环。这道题由于不存在负权重,所以就不检测了,参见代码如下:

解法二:

class Solution {
public:
int networkDelayTime(vector<vector<int>>& times, int N, int K) {
int res = ;
vector<int> dist(N + , INT_MAX);
dist[K] = ;
for (int i = ; i < N; ++i) {
for (auto e : times) {
int u = e[], v = e[], w = e[];
if (dist[u] != INT_MAX && dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
}
}
}
for (int i = ; i <= N; ++i) {
res = max(res, dist[i]);
}
return res == INT_MAX ? - : res;
}
};

下面这种解法是 Bellman Ford 解法的优化版本,由热心网友旅叶提供。之所以能提高运行速度,是因为使用了队列 queue,这样对于每个结点,不用都松弛所有的边,因为大多数的松弛计算都是无用功。优化的方法是,若某个点的 dist 值不变,不去更新它,只有当某个点的 dist 值被更新了,才将其加入 queue,并去更新跟其相连的点,同时还需要加入 HashSet,以免被反复错误更新,这样的时间复杂度可以优化到 O(E+V)。Java 版的代码在评论区三楼,旅叶声称可以 beat 百分之九十多,但博主改写的这个 C++ 版本的却只能 beat 百分之二十多,hmm,因缺斯汀。不过还是要比上面的解法二快很多,博主又仔细看了看,发现很像解法一和解法二的混合版本哈,参见代码如下:

解法三:

class Solution {
public:
int networkDelayTime(vector<vector<int>>& times, int N, int K) {
int res = ;
unordered_map<int, vector<pair<int, int>>> edges;
vector<int> dist(N + , INT_MAX);
queue<int> q{{K}};
dist[K] = ;
for (auto e : times) edges[e[]].push_back({e[], e[]});
while (!q.empty()) {
int u = q.front(); q.pop();
unordered_set<int> visited;
for (auto e : edges[u]) {
int v = e.first, w = e.second;
if (dist[u] != INT_MAX && dist[u] + w < dist[v]) {
dist[v] = dist[u] + w;
if (visited.count(v)) continue;
visited.insert(v);
q.push(v);
}
}
}
for (int i = ; i <= N; ++i) {
res = max(res, dist[i]);
}
return res == INT_MAX ? - : res;
}
};

讨论:最后再来说说这个 Floyd 算法,这也是一种经典的动态规划算法,目的是要找结点i到结点j的最短路径。而结点i到结点j的走法就两种可能,一种是直接从结点i到结点j,另一种是经过若干个结点k到达结点j。所以对于每个中间结点k,检查 dist(i, k) + dist(k, j) < dist(i, j) 是否成立,成立的话就松弛它,这样遍历完所有的结点k,dist(i, j) 中就是结点i到结点j的最短距离了。时间复杂度是 O(V3),处处透露着暴力美学。除了这三种算法外,还有一些很类似的优化算法,比如 Bellman-Ford 的优化算法- SPFA 算法,还有融合了 Bellman-Ford 和 Dijkstra 算法的高效的多源最短路径算法- Johnson 算法,这里就不过多赘述了,感兴趣的童鞋可尽情的 Google 之~

Github 同步地址:

https://github.com/grandyang/leetcode/issues/743

参考资料:

https://leetcode.com/problems/network-delay-time/description/

https://leetcode.com/problems/network-delay-time/discuss/109982/C++-Bellman-Ford

https://leetcode.com/problems/network-delay-time/discuss/109968/Simple-JAVA-Djikstra's-(PriorityQueue-optimized)-Solution-with-explanation

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 743. Network Delay Time 网络延迟时间的更多相关文章

  1. [LeetCode] Network Delay Time 网络延迟时间

    There are N network nodes, labelled 1 to N. Given times, a list of travel times as directed edges ti ...

  2. [LeetCode] Network Delay Time 网络延迟时间——最短路算法 Bellman-Ford(DP) 和 dijkstra(本质上就是BFS的迭代变种)

    There are N network nodes, labelled 1 to N. Given times, a list of travel times as directed edges ti ...

  3. LeetCode 743. Network Delay Time

    原题链接在这里:https://leetcode.com/problems/network-delay-time/ 题目: There are N network nodes, labelled 1  ...

  4. 【LeetCode】743. Network Delay Time 解题报告(Python)

    [LeetCode]743. Network Delay Time 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人博客: ht ...

  5. 743. Network Delay Time

    题目来源: https://leetcode.com/problems/network-delay-time/ 自我感觉难度/真实难度: 题意: 分析: 自己的代码: class Solution: ...

  6. 【leetcode】Network Delay Time

    题目: There are N network nodes, labelled 1 to N. Given times, a list of travel times as directed edge ...

  7. Java实现 LeetCode 743 网络延迟时间(Dijkstra经典例题)

    743. 网络延迟时间 有 N 个网络节点,标记为 1 到 N. 给定一个列表 times,表示信号经过有向边的传递时间. times[i] = (u, v, w),其中 u 是源节点,v 是目标节点 ...

  8. NFS - Network File System网络文件系统

    NFS(Network File System/网络文件系统): 设置Linux系统之间的文件共享(Linux与Windows中间文件共享采用SAMBA服务): NFS只是一种文件系统,本身没有传输功 ...

  9. 以Network Dataset(网络数据集)方式实现的最短路径分析

    转自原文 以Network Dataset(网络数据集)方式实现的最短路径分析 构建网络有两种方式,分别是网络数据集NetworkDataset和几何网络Geometric Network,这个网络结 ...

随机推荐

  1. OC 字典dictionaryWithObjectsAndKeys报错

    字典dictionaryWithObjectsAndKeys crash,也没有控制台打印输出: 解决方案!! 1.检查dictionaryWithObjectsAndKeys中的object key ...

  2. 【02】Nginx:基本配置和日志处理

    写在前面的话 Nginx 在安装完成后自动为我们生成了一个展示欢迎页的虚拟主机,除此之外,还附带了很多基础的配置,我们先来看看这些配置有什么用,顺便添加一些常用但是配置文件中并未初始化进去的配置来专门 ...

  3. yum 找不到程序,yum更换国内阿里源

    使用百度云服务器,发现百度yum源非常不稳定,果断采用阿里源,操作步骤如下: 一.备份 $ cd /etc/yum.repos.d/ $ mv baidu-bcm.repo baidu-bcm.rep ...

  4. 01_python基础(一)

    python学习笔记,打算用五章介绍完python基础语法及基本用法. 开发环境: python3.7    推荐:  https://github.com/jackfrued/Python-100- ...

  5. python 错误、调试、单元测试、文档测试

    错误分为程序的错误和由用户错误的输入引起的错误,此外还有因为各种各样意外的情况导致的错误,比如在磁盘满的时候写入.从网络爬取东西的时候,网络断了.这类错误称为异常 错误处理 参考链接:https:// ...

  6. https://www.cnblogs.com/kxm87/p/9268622.html

    数据库使用MySQL,ORM使用spring data jpa 1 因此需要再pom.xml文件中添加相应jar包.如下: <!-- 引入jap --> <dependency> ...

  7. php 除10取整,取十位数前面一个数字,百位前两个数字

    需求:php 除10取整,取十位数前面一个数字,百位前两个数字,并把大于2的加红显示 例:0-9,10-19,20-29,30-39,110-119对应为:0 1 2 3 11 实现主要方法:$num ...

  8. 蜂鸟E203 IFU模块

    E203的IFU(instruction fetch unit)模块主要功能和接口如下: IFU的PC生成单元产生下一条指令的PC. 该PC传输到地址判断和ICB生成单元,就是根据PC值产生相应读指请 ...

  9. <Android Studio> 1.如何APP配置权限

    Android Studio必须手动配置权限: 如添加权限 : android.permission.RECEIVE_BOOT_COMPLETED 1.android.permission.WRITE ...

  10. 【已解决】git的一些常用命令

    git:分布式的版本管理系统,一般的开发模式: 如果是开发人员,忽略此步骤,从下面大字的开始即可: 项目开始阶段,初始化项目(init),提交本地的代码到仓库,将本地仓库的代码推送到远端库(push) ...