读取excel:Pandas库read_excel()参数详解

  

pandas.read_excel(io,sheet_name = 0,header = 0,names = None,index_col = None,usecols = None,squeeze = False,dtype = None, ...)

io:字符串,文件的路径对象。

sheet_name:None、string、int、字符串列表或整数列表,默认为0。字符串用于工作表名称,整数用于零索引工作表位置,字符串列表或整数列表用于请求多个工作表,为None时获取所有工作表。

对应操作
sheet_name=0 第一张作为DataFrame
sheet_name=1 第二张作为DataFrame
sheet_name=“Sheet1” 第一张作DataFrame
sheet_name=[0,1,'Sheet5'] 第1页,第2页和第5页作为DataFrames的字典。

header:指定作为列名的行,默认0,即取第一行的值为列名。数据为列名行以下的数据;若数据不含列名,则设定 header = None。


names:默认为None,要使用的列名列表,如不包含标题行,应显示传递header=None


index_col:指定列为索引列,默认None列(0索引)用作DataFrame的行标签。


usecols:int或list,默认为None。

  • 如果为None则解析所有列
  • 如果为int则表示要解析的最后一列
  • 如果为int列表则表示要解析的列号列表
  • 如果字符串则表示以逗号分隔的Excel列字母和列范围列表(例如“A:E”或“A,C,E:F”)。范围包括双方。

squeeze:boolean,默认为False,如果解析的数据只包含一列,则返回一个Series。


dtype:列的类型名称或字典,默认为None。数据或列的数据类型。例如{'a':np.float64,'b':np.int32}使用对象保存存储在Excel中的数据而不解释dtype。如果指定了转换器,则它们将应用于dtype转换的INSTEAD。

写入excel:pandas.dataframe.to_excel()

to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='', float_format=None,columns=None, header=True, index=True, index_label=None,startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None,
inf_rep='inf', verbose=True, freeze_panes=None)

常用参数解析

  • excel_writer : ExcelWriter对象或者目标路径

  • sheet_name : excel表名命名

  • na_rep : 缺失值填充 ,可以设置为字符串

  • float_format : string, default None Format string for floating point numbers

  • columns : 选择输出的的列存入。

  • header : 指定作为列名的行,默认0,即取第一行,数据为列名行以下的数据;若数据不含列名,则设定 header = None;

  • index : 默认为True,显示index,当index=False 则不显示行索引(名字)

  • index_label : 设置索引列的列名

  • startrow :upper left cell row to dump data frame

  • startcol :upper left cell column to dump data frame

  • engine : string, default None ,write engine to use - you can also set this via the options,io.excel.xlsx.writer, io.excel.xls.writer, andio.excel.xlsm.writer.

  • merge_cells : boolean, default True Write MultiIndex and Hierarchical Rows as merged cells.

  • encoding: string, default None encoding of the resulting excel file. Only necessary for xlwt,other writers support unicode natively.

  • inf_rep : string, default ‘inf’ Representation for infinity (there is no native representation for infinity in Excel)

  • freeze_panes : tuple of integer (length 2), default None Specifies the one-based bottommost row and rightmost column that is to be frozen

  工作之中一个excel内会有多个sheet。但是将两组数据先后保存到一个excel内会发现只有后一组保存的数据,因为前一组的数据被后写入的数据覆盖了。如:

这是两组数据,df1与df2,我们分别使用to_excel将这两组数据保存到同一个excel内。这里我们将sheet_name这个参数改成不同的

但是结果只有一个df2,即df1被df2这组数据覆盖了。但是能不能两组数据同时写入、保存,但是不分先后顺序。答案是可以的!

为了这一方法,我们需要使用到ExcelWriter

方法很简单,不用再重新导入新的模块,只要使用pd.ExcelWriter建立一个writer,然后,将df1,df2都使用to_excel(writer, sheet名),最后一次性将这些数据保存,并关闭writer就完成了

当然跟open文件一样,上面的5行代码也可以简写如下:

with pd.ExcelWriter(r'C:\Users\数据\Desktop\data\test2.xls') as writer:
df1.to_excel(writer, sheet_name='df1')
df2.to_excel(writer, sheet_name='df2') 

简单高效,不需要再单独写save和close,自动完成。

 
 

Pandas操作excel的更多相关文章

  1. Python Pandas操作Excel

    Python Pandas操作Excel 前情提要 ☟ 本章使用的 Python3.6 Pandas==0.25.3 项目中需要用到excel的文件字段太多 考虑到后续字段命名的变动以及中文/英文/日 ...

  2. Python openpyxl、pandas操作Excel方法简介与具体实例

    本篇重点讲解windows系统下 Python3.5中第三方excel操作库-openpyxl: 其实Python第三方库有很多可以操作Excel,如:xlrd,xlwt,xlwings甚至注明的数据 ...

  3. 【Python自动化Excel】pandas操作Excel的“分分合合”

    话说Excel数据表,分久必合.合久必分.Excel数据表的"分"与"合"是日常办公中常见的操作.手动操作并不困难,但数据量大了之后,重复性操作往往会令人崩溃. ...

  4. pandas 操作 excel

    1. 多重 sheet Using Pandas to pd.read_excel() for multiple worksheets of the same workbook pd.read_exc ...

  5. (新手)使用pandas操作EXCEL

    import pandas as pdimport numpy as npfrom pandas import DataFrame,Series#path = r'C:\Users\tsl\Deskt ...

  6. Python利用pandas处理Excel数据的应用

    Python利用pandas处理Excel数据的应用   最近迷上了高效处理数据的pandas,其实这个是用来做数据分析的,如果你是做大数据分析和测试的,那么这个是非常的有用的!!但是其实我们平时在做 ...

  7. 【python基础】利用pandas处理Excel数据

    参考:https://www.cnblogs.com/liulinghua90/p/9935642.html 一.安装第三方库xlrd和pandas 1:pandas依赖处理Excel的xlrd模块, ...

  8. 用Python的pandas框架操作Excel文件中的数据教程

    用Python的pandas框架操作Excel文件中的数据教程 本文的目的,是向您展示如何使用pandas 来执行一些常见的Excel任务.有些例子比较琐碎,但我觉得展示这些简单的东西与那些你可以在其 ...

  9. pandas神器操作excel表格大全(数据分析数据预处理)

    使用pandas库操作excel,csv表格操作大全 关注公众号"轻松学编程"了解更多,文末有公众号二维码,可以扫码关注哦. 前言 准备三份csv表格做演示: 成绩表.csv su ...

随机推荐

  1. 十七:迭代器模式详解(foreach的精髓)

    定义:提供一种方法顺序访问一个聚合对象中各个元素,而又不需暴露该对象的内部表示. 从定义中可以看出,迭代器模式是为了在不暴露该对象内部表示的情况下,提供一种顺序访问聚合对象中元素的方法.这种思想在JA ...

  2. Windows+Qt+MinGW使用gRPC

    本文参考博客文章Qt gRPC 简单应用进行了亲自尝试,特此记录以下过程,为后人提供经验.我的环境:Windows10 x64需要依赖MSYS2环境(一个类Unix环境,包管理器)MSYS2 gith ...

  3. memory一致性模型

    https://homes.cs.washington.edu/~bornholt/post/memory-models.html https://www.cs.cmu.edu/afs/cs/acad ...

  4. iSCSI的配置(target/initiator)

    iSCSI:Internet 小型计算机系统接口 (iSCSI:Internet Small Computer System Interface) iSCSI技术是一种由IBM公司研究开发的,是一个供 ...

  5. MySql学习笔记三

    MySql学习笔记三 4.DML(数据操作语言) 插入:insert 修改:update 删除:delete 4.1.插入语句 语法: insert into 表名 (列名1,列名2,...) val ...

  6. PostgreSQL 插入行、查表、导出

    1.连接数据库 使用cmd选择安装路径下的psql.exe     登录用户名为postgres   输入密码进行登录. D:\PostgreSQL\9.6\bin\psql.exe -U postg ...

  7. 003-OpenStack-镜像服务

    OpenStack-镜像服务 [基于此文章的环境]点我快速打开文章 1.安装和配置 控制节点(controller) 1.1 创库授权 glance mysql CREATE DATABASE gla ...

  8. ulimit 更改 gcc升级 查看显卡状态命令

    一.更改ulimit: vim /etc/security/limits.conf 在文件最下方添加以下内容 * soft nofile 65536* hard nofile 65536 二. gcc ...

  9. Linux系统中的load average(平均负载/运行队列)

    1.load average 的含义 系统负载(System Load)是系统CPU繁忙程度的度量,即有多少进程在等待被CPU调度(进程等待队列的长度) linux系统中的Load对当前CPU工作量的 ...

  10. NOI.AC 722: tree

    就贴个代码 #include <cstdio> #include <algorithm> typedef long long LL; const int MN = 200005 ...