pro:给定N*M的矩阵,以及初始玩家位置。 规定玩家每次会等概率的向左走,向右走,向下走,原地不动,问走到最后一行的期望。保留4位小数。

sol:可以列出方程,高斯消元即可,发现是三角矩阵,O(N*M)----元素个数。  也可以用反复逼近答案。 反复做,dp[i][j]=(dp[i][j+1]+dp[i][j-1]+dp[i][j]+dp[i-1][j])/d[j]+1.0  为了使逼近效果更好,我每次先左一次,再右一次。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
double dp[maxn][maxn]; int d[maxn];
int main()
{
int N,M,x,y;
scanf("%d%d%d%d",&N,&M,&x,&y);
rep(i,,M){
d[i]=;
if(i>) d[i]++;
if(i<M) d[i]++;
}
rep(i,x+,N){
rep(t,,){
rep(j,,M) dp[i][j]=(dp[i][j+]+dp[i][j-]+dp[i][j]+dp[i-][j])/d[j]+1.0;
for(int j=M;j>=;j--) dp[i][j]=(dp[i][j+]+dp[i][j-]+dp[i][j]+dp[i-][j])/d[j]+1.0;
}
}
printf("%.10lf\n",dp[N][y]);
return ;
}

高斯消元版本:

由于同行之间有后效性,所以我们在相邻层之间列方程,然后高斯消元。  即N次高斯消元,由于是上三角矩阵,所以每次高斯消元的复杂度是线性的:每行消去一个,然后倒着求解即可。

#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
double a[maxn][maxn],res[maxn],ans[maxn][maxn];
int N,M,X,Y;
void Guass()
{
for(int R=N-;R>=X;R--){
rep(i,,M) res[i]=ans[R+][i];
a[][]=a[M][M]=-2.0/3.0; a[][]=a[M][M-]=1.0/3.0;
res[]=-ans[R+][]/3.0-; res[M]=-ans[R+][M]/3.0-;
rep(i,,M-){
a[i][i-]=a[i][i+]=1.0/4.0;
a[i][i]=-3.0/4.0;
res[i]=-ans[R+][i]/4.0-;
}
rep(i,,M-){
double t=a[i+][i]/a[i][i];
a[i+][i]-=t*a[i][i];
a[i+][i+]-=t*a[i][i+];
//a[i+1][i+2]-=t*a[i][i+2]; 不知道为什么这行删去了也能AC
res[i+]-=t*res[i];
}
ans[R][M]=res[M]/a[M][M];
for(int i=M-;i>=;i--){
ans[R][i]=(res[i]-a[i][i+]*ans[R][i+])/a[i][i];
}
}
}
int main()
{
scanf("%d%d%d%d",&N,&M,&X,&Y);
if(M==){
printf("%.10lf\n",2.0*(N-X));
return ;
}
Guass();
printf("%.10lf\n",ans[X][Y]);
return ;
}

CodeForces - 24D :Broken robot (DP+三对角矩阵高斯消元 随机)的更多相关文章

  1. CodeForces 24D Broken robot(期望+高斯消元)

    CodeForces 24D Broken robot 大致题意:你有一个n行m列的矩形板,有一个机器人在开始在第i行第j列,它每一步会随机从可以选择的方案里任选一个(向下走一格,向左走一格,向右走一 ...

  2. Codeforces.24D.Broken robot(期望DP 高斯消元)

    题目链接 可能这儿的会更易懂一些(表示不想再多写了). 令\(f[i][j]\)表示从\((i,j)\)到达最后一行的期望步数.那么有\(f[n][j]=0\). 若\(m=1\),答案是\(2(n- ...

  3. codeforces 24d Broken robot 期望+高斯消元

    题目传送门 题意:在n*m的网格上,有一个机器人从(x,y)出发,每次等概率的向右.向左.向下走一步或者留在原地,在最左边时不能向右走,最右边时不能像左走.问走到最后一行的期望. 思路:显然倒着算期望 ...

  4. CodeForces 24D Broken Robot

    题意:n*m的棋盘,一个机器人在(i,j)处,每次等概率地停在原地,向左移动一格,向右移动一格,向下移动一格(不能移出棋盘).求走到最后一行所需期望步数.n<=1000,m<=1000 一 ...

  5. BZOJ 3503: [Cqoi2014]和谐矩阵( 高斯消元 )

    偶数个相邻, 以n*m个点为变量, 建立异或方程组然后高斯消元... O((n*m)^3)复杂度看起来好像有点大...但是压一下位的话就是O((n*m)^3 / 64), 常数小, 实际也跑得很快. ...

  6. BZOJ3270: 博物馆【概率DP】【高斯消元】

    Description 有一天Petya和他的朋友Vasya在进行他们众多旅行中的一次旅行,他们决定去参观一座城堡博物馆.这座博物馆有着特别的样式.它包含由m条走廊连接的n间房间,并且满足可以从任何一 ...

  7. BZOJ3141 Hnoi2013 游走 【概率DP】【高斯消元】*

    BZOJ3141 Hnoi2013 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点 ...

  8. 矩阵&&高斯消元

    矩阵运算: \(A\times B\)叫做\(A\)左乘\(B\),或者\(B\)右乘\(A\). 行列式性质: \(1.\)交换矩阵的两行(列),行列式取相反数. \(2.\)某一行元素都\(\ti ...

  9. BZOJ3503:[CQOI2014]和谐矩阵(高斯消元,bitset)

    Description 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本 身,及他上下左右的4个元素(如果存在). 给定矩阵的行数和列数,请计算并输 ...

随机推荐

  1. day16——自定义模块、time、datetime、random

    day16 自定义模块 自定义一个模块 import :导入(拿工具箱) # import test # test.func() 导入发生的事情 在当前的名称空间中开辟一个新的空间 将模块中所有的代码 ...

  2. java知识精要(二)

    java知识精要(一) 集合 Iterable v.s. Iterator 两者都是接口,在Collection继承的是Iterable. Iterable表达了集合具备迭代访问的能力,而Iterat ...

  3. Vue 公众号开发 (菜鸡前段的血泪史)

    首先vue-cli就不说了 接下来要说我们需要注意什么 公众号的每个页面都有一个title 所以我们在开发过程中 需要插件 安装vue-wechat-title 安装vue-js-sdk

  4. ansible debugger 模块

    在搞TF(tungstenfabric)时遇到了一些错误,TF通过ansible playbook 来部署的.通常情况下遇到错误都是通过ansibale xxxx –vvv 来详细输出一下.出错的类型 ...

  5. Visual Studio 2019 使用.Net Core 3.0 二

    一.遇到难题 在微软官方逛了一圈,看到了这个. 马上点击,进去看看什么情况. 1.安装previewVisual studio 2019 2.设置SDK previews in Visual Stud ...

  6. 2019 网易java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.网易等公司offer,岗位是Java后端开发,因为发展原因最终选择去了网易,入职一年时间了,也成为了面试官,之 ...

  7. 【开发笔记】- 安装zip和unzip命令

    [root@iz2zeea05by6vofxzsoxdbz elasticsearch]# unzip elasticsearch-6.2.4.zip -bash: unzip: command no ...

  8. 关于justify-content属性的再学习(区分三个属性)

    justify-content属性: 用来表示可伸缩项目在主轴方向上的对齐方式: 取值范围为flex-start,flex-end,center,space-between,space-around: ...

  9. MVC、MVP及MVVM之间的关系

    介绍 写这篇随笔完全是为了加深自己的印象,毕竟写比看能获得得更多,另外本人对这三种模式的认识还是浅薄的,有待在以后的工作学习中有更深入的理解,因此不免会有误解,这里推荐大家阅读廖雪峰关于MVVM的介绍 ...

  10. Hybris产品主数据的价格折扣维护

    登录Hybris backoffice的产品管理界面,进入price标签页,点击Create new Discount Row按钮: 在Discount下拉地段里选择10%的折扣,这个产品原来的单价是 ...