Binary Robust Independent Elementary Features

www.cnblogs.com/ronny

1. BRIEF的基本原理

我们已经知道SIFT特征采用了128维的特征描述子,由于描述子用的浮点数,所以它将会占用512 bytes的空间。类似地,对于SURF特征,常见的是64维的描述子,它也将占用256bytes的空间。如果一幅图像中有1000个特征点(不要惊讶,这是很正常的事),那么SIFT或SURF特征描述子将占用大量的内存空间,对于那些资源紧张的应用,尤其是嵌入式的应用,这样的特征描述子显然是不可行的。而且,越占有越大的空间,意味着越长的匹配时间。

但是实际上SFIT或SURF的特征描述子中,并不是所有维都在匹配中有着实质性的作用。我们可以用PCA、LDA等特征降维的方法来压缩特征描述子的维度。还有一些算法,例如LSH,将SIFT的特征描述子转换为一个二值的码串,然后这个码串用汉明距离进行特征点之间的匹配。这种方法将大大提高特征之间的匹配,因为汉明距离的计算可以用异或操作然后计算二进制位数来实现,在现代计算机结构中很方便。下面来们提取一种二值码串的特征描述子。

BRIEF[1]应运而生,它提供了一种计算二值串的捷径,而并不需要去计算一个类似于SIFT的特征描述子。它需要先平滑图像,然后在特征点周围选择一个Patch,在这个Patch内通过一种选定的方法来挑选出来nd个点对。然后对于每一个点对(p,q),我们来比较这两个点的亮度值,如果I(p)>I(q)则这个点对生成了二值串中一个的值为1,如果I(p)<I(q),则对应在二值串中的值为-1,否则为0。所有nd个点对,都进行比较之间,我们就生成了一个nd长的二进制串。

对于nd的选择,我们可以设置为128,256或512,这三种参数在OpenCV中都有提供,但是OpenCV中默认的参数是256,这种情况下,非匹配点的汉明距离呈现均值为128比特征的高斯分布。一旦维数选定了,我们就可以用汉明距离来匹配这些描述子了。

值得注意的是,对于BRIEF,它仅仅是一种特征描述符,它不提供提取特征点的方法。所以,如果你必须使一种特征点定位的方法,如FAST、SIFT、SURF等。这里,我们将使用CenSurE方法来提取关键点,对BRIEF来说,CenSurE的表现比SURF特征点稍好一些。

总体来说,BRIEF是一个效率很高的提取特征描述子的方法,同时,它有着很好的识别率,但当图像发生很大的平面内的旋转。

2. 关于点对的选择

设我们在特征点的邻域块大小为S×S内选择nd个点对(p,q),Calonder的实验中测试了5种采样方法:

1)在图像块内平均采样;

2)p和q都符合(0,125S2)的高斯分布;

3)p符合(0,125S2)的高斯分布,而q符合(0,1100S2)的高斯分布;

4)在空间量化极坐标下的离散位置随机采样

5)把p固定为(0,0),q在周围平均采样

下面是上面5种采样方法的结果示意图。

 

2. OpenCV实现BRIEF

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp> using namespace cv; int main(int argc, char** argv)
{
Mat img_1 = imread("box.png");
Mat img_2 = imread("box_in_scene.png"); // -- Step 1: Detect the keypoints using STAR Detector
std::vector<KeyPoint> keypoints_1,keypoints_2;
StarDetector detector;
detector.detect(img_1, keypoints_1);
detector.detect(img_2, keypoints_2); // -- Stpe 2: Calculate descriptors (feature vectors)
BriefDescriptorExtractor brief;
Mat descriptors_1, descriptors_2;
brief.compute(img_1, keypoints_1, descriptors_1);
brief.compute(img_2, keypoints_2, descriptors_2); //-- Step 3: Matching descriptor vectors with a brute force matcher
BFMatcher matcher(NORM_HAMMING);
std::vector<DMatch> mathces;
matcher.match(descriptors_1, descriptors_2, mathces);
// -- dwaw matches
Mat img_mathes;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, mathces, img_mathes);
// -- show
imshow("Mathces", img_mathes); waitKey(0);
return 0;
}

[1] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua, “BRIEF: Binary Robust Independent Elementary Features”, 11th European Conference on Computer Vision (ECCV), Heraklion, Crete. LNCS Springer, September 2010.

【计算机视觉】BRIEF特征匹配的更多相关文章

  1. 计算机视觉-SIFT特征匹配进行目标转换

    Lowe将SIFT算法分解为如下四步: 1. 尺度空间极值检测:搜索所有尺度上的图像位置.通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点. 关键点定位:在每个候选的位置上,通过一个拟合精细的模 ...

  2. 特征提取(Detect)、特征描述(Descriptor)、特征匹配(Match)的通俗解释

    特征匹配(Feature Match)是计算机视觉中很多应用的基础,比如说图像配准,摄像机跟踪,三维重建,物体识别,人脸识别,所以花一些时间去深入理解这个概念是不为过的.本文希望通过一种通俗易懂的方式 ...

  3. OpenCV探索之路(二十三):特征检测和特征匹配方法汇总

    一幅图像中总存在着其独特的像素点,这些点我们可以认为就是这幅图像的特征,成为特征点.计算机视觉领域中的很重要的图像特征匹配就是一特征点为基础而进行的,所以,如何定义和找出一幅图像中的特征点就非常重要. ...

  4. 【计算机视觉】特征脸EigenFace与PCA

    [计算机视觉]特征脸EigenFace与PCA 标签(空格分隔): [图像处理] 版权声明:本文为博主原创文章,转载请注明出处http://blog.csdn.net/lg1259156776/. 说 ...

  5. OpenCV 之 特征匹配

    OpenCV 中有两种特征匹配方法:暴力匹配 (Brute force matching) 和 最近邻匹配 (Nearest Neighbors matching) 它们都继承自 Descriptor ...

  6. OpenCV2:特征匹配及其优化

    在OpenCV2简单的特征匹配中对使用OpenCV2进行特征匹配的步骤做了一个简单的介绍,其匹配出的结果是非常粗糙的,在这篇文章中对使用OpenCV2进行匹配的细化做一个简单的总结.主要包括以下几个内 ...

  7. OpenCV2简单的特征匹配

    特征的匹配大致可以分为3个步骤: 特征的提取 计算特征向量 特征匹配 对于3个步骤,在OpenCV2中都进行了封装.所有的特征提取方法都实现FeatureDetector接口,DescriptorEx ...

  8. (三)ORB特征匹配

    ORBSLAM2匹配方法流程 在基于特征点的视觉SLAM系统中,特征匹配是数据关联最重要的方法.特征匹配为后端优化提供初值信息,也为前端提供较好的里程计信息,可见,若特征匹配出现问题,则整个视觉SLA ...

  9. opencv学习之路(34)、SIFT特征匹配(二)

    一.特征匹配简介 二.暴力匹配 1.nth_element筛选 #include "opencv2/opencv.hpp" #include <opencv2/nonfree ...

  10. 第十六节、基于ORB的特征检测和特征匹配

    之前我们已经介绍了SIFT算法,以及SURF算法,但是由于计算速度较慢的原因.人们提出了使用ORB来替代SIFT和SURF.与前两者相比,ORB有更快的速度.ORB在2011年才首次发布.在前面小节中 ...

随机推荐

  1. 使用RunTime.getRunTime().addShutdownHook优雅关闭线程池

    有时候我们用到的程序不一定总是在JVM里面驻守,可能调用完就不用了,释放资源. RunTime.getRunTime().addShutdownHook的作用就是在JVM销毁前执行的一个线程.当然这个 ...

  2. Windows下Redis集群安装与部署

    1.下载 Redis-x64-3.2.100.zip 安装程序 官网下载地址:http://redis.io/download GitHub下载地址:https://github.com/micros ...

  3. .net mvc 几种跨域获取数据方案

    方案一: 在web.conflg配置文件system.webServer节点中添加以下节点配置 <!--允许 "所有网站" 跨域访问写法:--><httpProt ...

  4. C#利用newtonsoft.json读取.so配置文件内容

    今天花 了点时间来使用 C#读取json文件 ,文件后缀为 .so文件 ,也是基于文件流的形式 获取 对象 ,然后解析; 之所以尝试 使用 json读取 ,是因为其配置文件的格式 更为友好 和方便,直 ...

  5. error LNK2019: 无法解析的外部符号 _Direct3DCreate9@4,该符号在函数 "long __cdecl InitD3D(struct HWND__ *)" (?InitD3D

    出现如下错误: error LNK2019: 无法解析的外部符号 _Direct3DCreate9@4,该符号在函数 "long __cdecl InitD3D(struct HWND__ ...

  6. django rest_framework 实现用户登录认证

    django rest_framework 实现用户登录认证 1.安装 pip install djangorestframework 2.创建项目及应用 创建过程略 目录结构如图 3.设置setti ...

  7. Robot Framework RIDE简单使用

    Testproject Testsuite Testcase 1.创建测试项目 打开RIDE,点击File--New Project,选择项目路径,填入项目名称 2.右键点击新建的测试项目,选择New ...

  8. django-URL路由系统

    配置 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表.你就是以这种方式告诉Django,对于这个URL调用这段代码,对于那个U ...

  9. 洛谷P2680 运输计划(倍增LCA + 树上差分 + 二分答案)

    [题目链接] [思路]: 根据题意可以明显看出,当所有任务都完成时的时间是最终的结果,也就是说本题要求,求出最小的最大值. 那这样的话就暗示了将答案二分,进行check. [check方法]: 如果说 ...

  10. python 基础笔记-函数

    函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段·. 好处为: 一可以把程序中相对独立的功能模块抽取出来,减少重读代码的编写: 二是将来可以以重复的使用这些功能模块    定义一个函数 ...