LightOJ - 1226 - One Unit Machine(排列组合)
链接:
https://vjudge.net/problem/LightOJ-1226
题意:
OUM is a one unit machine which processes jobs. Since it can't handle heavyweight jobs; jobs needs to be partitioned into units. Initially, all the job information and unit partitions are given as input. Then the machine allocates necessary time slots. And in each time slot it asks the user for the name of the job to be processed. After getting the name; the machine determines the next unprocessed unit of that job and processes that unit in that slot. If there is no such unit, the machine crashes. A job is said to be complete if all the units of that job are complete.
For example, let J1 and J2 be two jobs each having 2 units. So, OUM will create 4 time slots. Now the user can give J1 J2 J2 J1 as input. That means it completes the 1st unit of J1 in time slot 1 and then completes the 1st unit of J2 in time slot 2. After that it completes the 2nd unit of J2 and 2nd unit of J1 in time slots 3 and 4 respectively. But if the user gives J1 J1 J2 J1 as input, the machine crashes in time slot 4 since it tries to process 3rd unit of J1 which is not available.
Now, Sam is the owner of a software firm named ACM and he has n jobs to complete using OUM. He wants to complete Jobi before Jobi+1 where 1 ≤ i < n. Now he wants to know the total number of ways he can complete these jobs without crashing the OUM. He assigned you for this task. Two ways are different if at tth slot one processed a unit of Jobi and another processed a unit of Jobj where i ≠ j. For the example above, there are three ways:
J1 J1 J2 J2
J1 J2 J1 J2
J2 J1 J1 J2
思路:
考虑对前面放好了i个,下一个只要把一个放在最后,其他的放在前面任意组合即可。
得到第i个能放的方法\(C_{a[i]-1+sum}^{sum}\)sum为已经放了的个数
代码:
// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10;
LL Fac[MAXN];
int a[MAXN], n;
LL PowMod(LL a, LL b, LL p)
{
LL res = 1;
while(b)
{
if (b&1)
res = res*a%p;
a = a*a%p;
b >>= 1;
}
return res;
}
LL ExGcd(LL a, LL b, LL &x, LL &y)
{
if (b == 0)
{
x = 1, y = 0;
return a;
}
LL d = ExGcd(b, a%b, x, y);
LL tmp = x;
x = y;
y = tmp-(a/b)*y;
return d;
}
LL GetInv(LL a, LL p)
{
LL x, y;
LL d = ExGcd(a, p, x, y);
if (d == 1)
return (x%p+p)%p;
else
return -1;
// return PowMod(a, p-2, p);
}
LL C(LL a, LL b)
{
if (a < b)
return 0;
if (a == b)
return 1;
return (Fac[a]*GetInv(Fac[a-b]*Fac[b]%MOD, MOD))%MOD;
}
LL Lucas(LL a, LL b)
{
if (b == 0)
return 1;
return C(a%MOD, b%MOD)*Lucas(a/MOD, b/MOD)%MOD;
}
void Init()
{
Fac[0] = 1;
Fac[1] = 1;
Fac[2] = 2;
for (int i = 3;i < MAXN;i++)
Fac[i] = Fac[i-1]*i%MOD;
}
int main()
{
// freopen("test.in", "r", stdin);
Init();
int t, cas = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cas);
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d", &a[i]);
LL ans = 1, sum = 0;
for (int i = 1;i <= n;i++)
{
ans = ans*C(a[i]-1+sum, sum)%MOD;
sum += a[i];
}
printf(" %lld\n", ans);
}
return 0;
}
LightOJ - 1226 - One Unit Machine(排列组合)的更多相关文章
- lightoj 1226 - One Unit Machine(dp+大组合数去摸)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1226 题解:由于这些任务完成是有先后的所以最后一个完成的肯定是最后一个任务的子 ...
- LightOJ 1226 - One Unit Machine Lucas/组合数取模
题意:按要求完成n个任务,每个任务必须进行a[i]次才算完成,且按要求,第i个任务必须在大于i任务完成之前完成,问有多少种完成顺序的组合.(n<=1000 a[i] <= 1e6 mod ...
- 1226 - One Unit Machine
1226 - One Unit Machine PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...
- HDU 4045 Machine scheduling (组合数学-斯特林数,组合数学-排列组合)
Machine scheduling Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- LightOJ 1028 - Trailing Zeroes (I) 质因数分解/排列组合
题意:10000组数据 问一个数n[1,1e12] 在k进制下有末尾0的k的个数. 思路:题意很明显,就是求n的因子个数,本来想直接预处理欧拉函数,然后拿它减n就行了.但注意是1e12次方法不可行.而 ...
- 学习sql中的排列组合,在园子里搜着看于是。。。
学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...
- .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)
今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
随机推荐
- Selenium自动化获取WebSocket信息
性能日志 ChromeDriver支持性能日志记录,您可以从中获取域“时间轴”,“网络”和“页面”的事件,以及指定跟踪类别的跟踪数据. 启用性能日志 默认情况下不启用性能日志记录.因此,在创建新会话时 ...
- Apache Kafka + Spark Streaming Integration
1.目标 为了构建实时应用程序,Apache Kafka - Spark Streaming Integration是最佳组合.因此,在本文中,我们将详细了解Kafka中Spark Streamin ...
- 酷!微软发布新终端工具,Win 10 将自带 Linux 内核
原创:技术最前线(id:TopITNews) 北京时间 5 月 7 日,2019 年微软 Build 开发者大会在雷德蒙德召开.今年大会上亮点很多,本文汇总一些和开发者相关的内容. 1. Window ...
- Ubuntu下载搜狗输入法
实在...因为百度上写的就很好了,所以这里就直接“链”了.. https://jingyan.baidu.com/article/2d5afd6933a67b85a2e28e9f.html
- Spring MVC拦截器完整代码示例
拦截器的作用: 编写一个自定义的类,实现相关拦截器接口: preHandler不放行,直接return false:直接跳转到错误页面error.jsp postHandler后置处理器,也就是C ...
- extend Thread 和 implements Runnable
原文地址:extend Thread 和 implements Runnable 一个Thread的实例只能产生一个线程 or: 同一实例(Runnable实例)的多个线程 look: public ...
- PyTorch工具
以装饰器添加所有代码对应的tensor的信息 https://github.com/zasdfgbnm/TorchSnooper
- 关闭 禁止 window10 UpdateOrchestrator UsoSvc服务
背景故事:w10流氓更新关了! 然后重启还更新? 读者肯定关过win10自动跟新服务 如图: 然后 还有这个流氓设置 然而微软还有一招啊! 前有win10 update 后有计划任务 powershe ...
- Elasticsearch 及 Kibana 安装篇
简介 官网-安装介绍 这里记载了各个软件包的安装方法,Linux Mac Windows-- 本文记载的是在 CentOS 系统安装 Elasticsearch 7.0.0 版本的步骤. 安装 Jav ...
- img中alt和title属性的区别
在图像标签img中,除了常用的宽度width和高度height属性之外,还有两个比较重要并且也会用到的属性,就是alt和title,这都是用来显示图片内容的具体信息的,但是这两个属性也有不同的地方.a ...