LightOJ - 1226 - One Unit Machine(排列组合)
链接:
https://vjudge.net/problem/LightOJ-1226
题意:
OUM is a one unit machine which processes jobs. Since it can't handle heavyweight jobs; jobs needs to be partitioned into units. Initially, all the job information and unit partitions are given as input. Then the machine allocates necessary time slots. And in each time slot it asks the user for the name of the job to be processed. After getting the name; the machine determines the next unprocessed unit of that job and processes that unit in that slot. If there is no such unit, the machine crashes. A job is said to be complete if all the units of that job are complete.
For example, let J1 and J2 be two jobs each having 2 units. So, OUM will create 4 time slots. Now the user can give J1 J2 J2 J1 as input. That means it completes the 1st unit of J1 in time slot 1 and then completes the 1st unit of J2 in time slot 2. After that it completes the 2nd unit of J2 and 2nd unit of J1 in time slots 3 and 4 respectively. But if the user gives J1 J1 J2 J1 as input, the machine crashes in time slot 4 since it tries to process 3rd unit of J1 which is not available.
Now, Sam is the owner of a software firm named ACM and he has n jobs to complete using OUM. He wants to complete Jobi before Jobi+1 where 1 ≤ i < n. Now he wants to know the total number of ways he can complete these jobs without crashing the OUM. He assigned you for this task. Two ways are different if at tth slot one processed a unit of Jobi and another processed a unit of Jobj where i ≠ j. For the example above, there are three ways:
J1 J1 J2 J2
J1 J2 J1 J2
J2 J1 J1 J2
思路:
考虑对前面放好了i个,下一个只要把一个放在最后,其他的放在前面任意组合即可。
得到第i个能放的方法\(C_{a[i]-1+sum}^{sum}\)sum为已经放了的个数
代码:
// #include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<vector>
#include<string.h>
#include<set>
#include<queue>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const int MOD = 1e9+7;
const int MAXN = 1e6+10;
LL Fac[MAXN];
int a[MAXN], n;
LL PowMod(LL a, LL b, LL p)
{
LL res = 1;
while(b)
{
if (b&1)
res = res*a%p;
a = a*a%p;
b >>= 1;
}
return res;
}
LL ExGcd(LL a, LL b, LL &x, LL &y)
{
if (b == 0)
{
x = 1, y = 0;
return a;
}
LL d = ExGcd(b, a%b, x, y);
LL tmp = x;
x = y;
y = tmp-(a/b)*y;
return d;
}
LL GetInv(LL a, LL p)
{
LL x, y;
LL d = ExGcd(a, p, x, y);
if (d == 1)
return (x%p+p)%p;
else
return -1;
// return PowMod(a, p-2, p);
}
LL C(LL a, LL b)
{
if (a < b)
return 0;
if (a == b)
return 1;
return (Fac[a]*GetInv(Fac[a-b]*Fac[b]%MOD, MOD))%MOD;
}
LL Lucas(LL a, LL b)
{
if (b == 0)
return 1;
return C(a%MOD, b%MOD)*Lucas(a/MOD, b/MOD)%MOD;
}
void Init()
{
Fac[0] = 1;
Fac[1] = 1;
Fac[2] = 2;
for (int i = 3;i < MAXN;i++)
Fac[i] = Fac[i-1]*i%MOD;
}
int main()
{
// freopen("test.in", "r", stdin);
Init();
int t, cas = 0;
scanf("%d", &t);
while(t--)
{
printf("Case %d:", ++cas);
scanf("%d", &n);
for (int i = 1;i <= n;i++)
scanf("%d", &a[i]);
LL ans = 1, sum = 0;
for (int i = 1;i <= n;i++)
{
ans = ans*C(a[i]-1+sum, sum)%MOD;
sum += a[i];
}
printf(" %lld\n", ans);
}
return 0;
}
LightOJ - 1226 - One Unit Machine(排列组合)的更多相关文章
- lightoj 1226 - One Unit Machine(dp+大组合数去摸)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1226 题解:由于这些任务完成是有先后的所以最后一个完成的肯定是最后一个任务的子 ...
- LightOJ 1226 - One Unit Machine Lucas/组合数取模
题意:按要求完成n个任务,每个任务必须进行a[i]次才算完成,且按要求,第i个任务必须在大于i任务完成之前完成,问有多少种完成顺序的组合.(n<=1000 a[i] <= 1e6 mod ...
- 1226 - One Unit Machine
1226 - One Unit Machine PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB ...
- HDU 4045 Machine scheduling (组合数学-斯特林数,组合数学-排列组合)
Machine scheduling Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- LightOJ 1028 - Trailing Zeroes (I) 质因数分解/排列组合
题意:10000组数据 问一个数n[1,1e12] 在k进制下有末尾0的k的个数. 思路:题意很明显,就是求n的因子个数,本来想直接预处理欧拉函数,然后拿它减n就行了.但注意是1e12次方法不可行.而 ...
- 学习sql中的排列组合,在园子里搜着看于是。。。
学习sql中的排列组合,在园子里搜着看,看到篇文章,于是自己(新手)用了最最原始的sql去写出来: --需求----B, C, F, M and S住在一座房子的不同楼层.--B 不住顶层.C 不住底 ...
- .NET平台开源项目速览(11)KwCombinatorics排列组合使用案例(1)
今年上半年,我在KwCombinatorics系列文章中,重点介绍了KwCombinatorics组件的使用情况,其实这个组件我5年前就开始用了,非常方便,麻雀虽小五脏俱全.所以一直非常喜欢,才写了几 ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(三)——笛卡尔积组合
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
- 【原创】开源.NET排列组合组件KwCombinatorics使用(二)——排列生成
本博客所有文章分类的总目录:本博客博文总目录-实时更新 本博客其他.NET开源项目文章目录:[目录]本博客其他.NET开源项目文章目录 KwCombinatorics组件文章目录: 1. ...
随机推荐
- 04 javascirpt基础知识---听课笔记
1.JavaScript概念 一门客户端脚本语言运行在客户端浏览器中的.每一个浏览器都有JavaScript的解析引擎脚本语言:不需要编译,直接就可以被浏览器解析执行了 * 功能:可以来增强用户和ht ...
- CF28B pSort
题目描述 给定一个含有n个元素的数列,第i号元素开始时数值为i,元素i可以与距离为d[i]的元素进行交换.再给定一个1-n的全排列,问初始的数列可否交换成给定的样式. 输入:第一行一个整数n,第二行n ...
- 简单的python爬虫教程:批量爬取图片
python编程语言,可以说是新型语言,也是这两年来发展比较快的一种语言,而且不管是少儿还是成年人都可以学习这个新型编程语言,今天南京小码王python培训机构变为大家分享了一个python爬虫教程. ...
- Exception: HTTP 599: SSL certificate problem: unable to get local issuer certificate 解决办法
使用Pyspider中报此错误. 错误原因: 这个错误会发生在请求 https 开头的网址,SSL 验证错误,证书有误. 解决方法: 使用self.crawl(url, callback=self.i ...
- 方法1:使用Jenkins构建Docker镜像 --SpringCloud
前提意义: SpringCloud微服务里包含多个文件夹,拉取仓库的所有代码,然后过根据选项参数使用maven编译打包指定目录的jar,然后再根据这个目录的Dockerfile文件制作Docker镜像 ...
- Java JDK1.8源码学习之路 2 String
写在最前 String 作为我们最常使用的一个Java类,注意,它是一个引用类型,不是基本类型,并且是一个不可变对象,一旦定义 不再改变 经常会定义一段代码: String temp = " ...
- 通过 AppSwitch 禁用 WPF 内置的触摸让 WPF 程序可以处理 Windows 触摸消息
原文:通过 AppSwitch 禁用 WPF 内置的触摸让 WPF 程序可以处理 Windows 触摸消息 WPF 框架自己实现了一套触摸机制,但同一窗口只能支持一套触摸机制,于是这会禁用系统的触摸消 ...
- C#判断字符串中包含某个字符的个数
//定义字符串 var Email= "humakesdkj@idsk@"; //获取@字符出现的次数 int num = Regex.Matches(Email, "@ ...
- C语言开发中常用英文缩写
BIOS(Basic Input Output System): 基本输入输出系统 reference: https://baike.baidu.com/item/bios/91424?fr=alad ...
- Linux下Java变量
一.JAVA_HOME.PATH.CLASSPATH详解 1.1.JAVA_HOME 指向jdk安装目录,该目录下有bin.lib目录.Eclipse/NetBeans/Tomcat等软件就是通过搜索 ...