「BJOI2018」治疗之雨
传送门
Description
有\(m+1\)个数,第一个数为\(p\),每轮:选一个数\(+1\),再依次选\(k\)个数\(-1\)
要求如果第一个数\(=N\),不能选它\(+1\),如果第一个数\(=0\),不能选它\(-1\)
如果没有可选的数,跳过该次选择
问使得第一个数\(=0\)的期望步数
\(N\le1500\),\(Case\le10\)
Solution
设\(f_i\)表示当第一个数为\(i\)时期望多少轮变为\(0\)
\[f_i=1+\sum_{j=1}^{i+1}p_{i,j}f_j,1\le i<n
\\
f_n=1+\sum_{j=1}^np_{i,j}f_j
\]其中\(p_{i,j}\)表示一轮将第一个数从\(i\)变为\(j\)的概率
对第一个式子进行移项
\[p_{i,i+1}f_{i+1}=-1-\sum_{j=1}^{i-1}f_j+(1-p_{i,i})f_i,2\le i \le n
\]问题在于不知道\(f_1\),所以可以先把\(f_1\)设为\(x\),推出\(f_n=a_1x+b_1\)
然后根据第二个式子,得到\(f_n=a_1x+b_2\)
最后解出\(f_1\),求得\(f_p\)
Code
#include<bits/stdc++.h>
#define ll long long
#define dbg1(x) cerr<<#x<<"="<<(x)<<" "
#define dbg2(x) cerr<<#x<<"="<<(x)<<"\n"
#define dbg3(x) cerr<<#x<<"\n"
using namespace std;
#define reg register
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*f;
}
const int MN=1505,P=1e9+7;
int Mul(int x,int y){return (1ll*x*y)%P;}
int Add(int x,int y){return (x+y)%P;}
int fp(int x,int y=P-2){int r=1;for(;y;y>>=1,x=Mul(x,x))if(y&1)r=Mul(r,x);return r;}
struct d{
int x,y;
d(int x=0,int y=0):x(x),y(y){}
d operator+(const d&o)const{return d(Add(x,o.x),Add(y,o.y));}
d operator-(const d&o)const{return d(Add(x,P-o.x),Add(y,P-o.y));}
d operator*(const int o)const{return d(Mul(x,o),Mul(y,o));}
}f[MN],or_;
int N,p,M,K,invM_,invM,a[MN][MN],g[MN],b[MN],inv[MN],X;
int solve()
{
reg int i,j;
if(K==0)return -1;
if(M==0)
{
if(K==1&&N>1) return -1;
g[0]=0;for(i=1;i<=N;++i)g[i]=g[max(min(N,i+1)-K,0)]+1;
return g[p];
}
memset(b,0,sizeof b);memset(a,0,sizeof a);
invM_=fp(M+1);invM=fp(M);b[0]=Mul(fp(M,K),fp(invM_,K));
for(i=1;i<=N&&i<=K;++i)b[i]=Mul(Mul(b[i-1],invM),Mul(inv[i],K-i+1));
for(i=1;i<N;++i)for(j=1;j<=i+1;++j)if(i-K<=j)
a[i][j]=Add(Mul(invM_,b[i+1-j]),Mul(invM_,Mul(M,b[i-j])));
for(i=1;i<=N;++i)a[N][i]=b[N-i];
for(f[1]=d(1,0),i=2;i<=N;++i)
{
f[i]=d(0,P-1);
for(j=1;j<i-1;++j)f[i]=f[i]-(f[j]*a[i-1][j]);
f[i]=f[i]+f[i-1]*((1-a[i-1][i-1]+P)%P);
f[i]=f[i]*fp(a[i-1][i]);
}
for(or_=d(0,1),i=1;i<N;++i)or_=or_+f[i]*a[N][i];or_=or_*fp(Add(1,P-a[N][N]));
or_=or_-f[N];if(!or_.x&&f[p].x) return -1;
X=Mul(or_.y,fp(P-or_.x));
return Add(Mul(f[p].x,X),f[p].y);
}
int main()
{
int cas=read();inv[0]=inv[1]=1;
for(int i=2;i<=1500;++i)inv[i]=Mul((P-P/i),inv[P%i]);
while(cas--)
{
N=read(),p=read(),M=read(),K=read();
printf("%d\n",solve());
}
return 0;
}
Blog来自PaperCloud,未经允许,请勿转载,TKS!
「BJOI2018」治疗之雨的更多相关文章
- 【LOJ】#2513. 「BJOI2018」治疗之雨
题解 具体就是列一个未知数方程\(dp[i]\)表示有\(i\)滴血的时候期望多少轮 \(dp[i] = 1 + \sum_{j = 1}^{i + 1} a_{i,j}dp[j]\) \(dp[n] ...
- 【LOJ2513】「BJOI2018」治疗之雨
题意 你现在有 \(m+1\) 个数:第一个为 \(p\) ,最小值为 \(0\) ,最大值为 \(n\) :剩下 \(m\) 个都是无穷,没有最小值或最大值.你可以进行任意多轮操作,每轮操作如下: ...
- 「BJOI2018」链上二次求和
「BJOI2018」链上二次求和 https://loj.ac/problem/2512 我说今天上午写博客吧.怕自己写一上午,就决定先写道题. 然后我就调了一上午线段树. 花了2h找到lazy标记没 ...
- 「BJOI2018」求和
「BJOI2018」求和 传送门 观察到 \(k\) 很小而且模数不会变,所以我们直接预处理 \(k\) 取所有值时树上前缀答案,查询的时候差分一下即可. 参考代码: #include <alg ...
- 【LOJ】#2511. 「BJOI2018」双人猜数游戏
题解 设\(f[p][a][b]\)表示询问了\(p\)次,答案是\(a,b\)是否会被猜出来 然后判断如果\(p = 1\) 第一个问的\(Alice\),那么\([s,\sqrt{nm}]\)约数 ...
- 【LOJ】#2493. 「BJOI2018」染色
题面 题解 推结论大题--然而我推不出什么结论 奇环显然是NO 如果一个联通块里有两个分离的环,也是NO 如果一个联通块里,点数为n,边数为m m <= n的时候,是YES m >= n ...
- 【LOJ】#2492. 「BJOI2018」二进制
题解 每次开这样的数据结构题感想都大概是如下两点 1.为什么别人代码长度都是我的1/2???? 2.为什么我运行时间都是他们的两倍???? 简单分析一下,我们关注一个区间是否合法只关注这个区间有多少个 ...
- 【LOJ】#2512. 「BJOI2018」链上二次求和
题面 题解 转化一下可以变成所有小于等于r的减去小于等于l - 1的 然后我们求小于等于x的 显然是 \(\sum_{i = 1}^{n} \sum_{j = 1}^{min(i,x)} sum[i] ...
- 【LOJ】#2491. 「BJOI2018」求和
题解 对于50个k都维护一个\(i^k\)前缀和即可 查询的时候就是查询一段连续的区间和,再加上根节点的 代码 #include <bits/stdc++.h> #define fi fi ...
随机推荐
- asp.net 报错 SAP 报错 试图加载格式不正确的程序。 (异常来自 HRESULT:0x8007000B)
“/”应用程序中的服务器错误. 试图加载格式不正确的程序. (异常来自 HRESULT:0x8007000B) 说明: 执行当前 Web 请求期间,出现未经处理的异常.请检查堆栈跟踪信息,以了解有关该 ...
- Mycat分布式数据库架构解决方案--搭建MySQL读写分离环境--一主多从
echo编辑整理,欢迎转载,转载请声明文章来源.欢迎添加echo微信(微信号:t2421499075)交流学习. 百战不败,依不自称常胜,百败不颓,依能奋力前行.--这才是真正的堪称强大!!! 本文主 ...
- Linux环境下:vmware安装Windows报错误-缺少所需的CD/DVD驱动器设备驱动程序
解决方法:将硬盘格式从SCSI改为IDE. 方法如下: 右键点击你新建的虚拟机名,点击最下面的setting,看到左侧第二行是hard disk 了么,你那里肯定是SCSI的,选中它,点最下面的rem ...
- Computer Neworking: A Top-Down Approach
目录 Chapter 1: Computer Networks and the Internet 1. What is the Internet? 2. The Network Edge 3. The ...
- 【Python】生成器
生成器是一种特殊的迭代器 # 斐波那契数列 10 def create_num(all_num): a, b = 0, 1 current_num = 0 while current_num < ...
- 快速了解MongoDB
简介 MongoDB是一款为广泛的现代应用程序设计的高性能.可扩展.分布式数据库系统.MongoDB可用于不同规模大小的组织,为那些对系统低延迟.高吞吐量以及可持续性有很高要求的应用提供稳定关键的服务 ...
- Linux开发环境配置大全
Linux开发环境配置 零章:通过xshell在linux上安装JDK8 壹章:通过xshell在linux上安装tomcat8 贰章:通过xshell在linux上安装mysql5.7(终极版) 叁 ...
- java String字符串编码类型转换
/** * 前后端数据乱码问题 * 解决办法1: * 乱码原因:一编一解码型不一致导致. * [main description] * @param {[type]} String[] args [d ...
- 随笔记录--Array类型
前言:除了Object类型之外,Array类型恐怕是ECMAScript中最常用的类型了.而且,ECMAScript中数组与其他多数语言中的数组有很大差别,ECMAScript数组中的每一项可以保存任 ...
- kali 使用John破解zip压缩包的密码
kali 使用John破解zip压缩包的密码 准备工具: zip压缩包带密码 1个 kali Linux机器 1个 操作步骤: 首先将压缩包上传至kali机器,然后使用zip2joh ...