AI-Sys

AI-Sys Spring 2019

Course Description

The recent success of AI has been in large part due in part to advances in hardware and software systems. These systems have enabled training increasingly complex models on ever larger datasets. In the process, these systems have also simplified model development, enabling the rapid growth in the machine learning community. These new hardware and software systems include a new generation of GPUs and hardware accelerators (e.g., TPU and Nervana), open source frameworks such as Theano, TensorFlow, PyTorch, MXNet, Apache Spark, Clipper, Horovod, and Ray, and a myriad of systems deployed internally at companies just to name a few. At the same time, we are witnessing a flurry of ML/RL applications to improve hardware and system designs, job scheduling, program synthesis, and circuit layouts.

In this course, we will describe the latest trends in systems designs to better support the next generation of AI applications, and applications of AI to optimize the architecture and the performance of systems. The format of this course will be a mix of lectures, seminar-style discussions, and student presentations. Students will be responsible for paper readings, and completing a hands-on project. Readings will be selected from recent conference proceedings and journals. For projects, we will strongly encourage teams that contains both AI and systems students.

Course Syllabus

This is a tentative schedule. Specific readings are subject to change as new material is published.

Jump to Today

Week  Date (Lec.)  Topic 
1 1/23/19 
( 1 )

Introduction and Course Overview

This lecture will be an overview of the class, requirements, and an introduction to what makes great AI-Systems research.

Slide Links

2 1/28/19 
( 2 )

Convolutional Neural Network Architectures

Minor Update: We have moved the reading on auto-encoders to Wednesday.

Reading notes for the two required readings below must be submitted using this google form by Monday the 28th at 9:30AM. We have asked that for each reading you answer the following questions:

  1. What is the problem that is being solved?
  2. What are the metrics of success?
  3. What are the key innovations over prior work?
  4. What are the key results?
  5. What are some of the limitations and how might this work be improved?
  6. How might this work have long term impact?

If you find some of the reading confusing and want a more gentle introduction, the optional reading contains some useful explanatory blog posts that may help.

Links

Additional Optional Reading

1/30/19 
( 3 )

More Neural Network Architectures

Links

 

Additional Optional Reading

3 2/4/19 
( 4 )

Deep Learning Frameworks

Links

 
2/6/19 
( 5 )

RL Systems & Algorithms

Links

 
4 2/11/19 
( 6 )

Application: Data Structure and Algorithms

Links

 
2/13/19 
( 7 )

Distributed Systems for ML

Links

 
5 2/18/19 
( 8 )

Administrative Holiday (Feb 18th)

2/20/19 
( 9 )

Hyperparameter search

Links

  • Reading Quiz due before class. There was a mix-up in updating the reading and the wrong paper was swapped. You may either read the Hyperband paper (preferred) or the Vizer paper (see optional reading) for the second reading.
  • A Generalized Framework for Population Based Training [pdf]
 
6 2/25/19 
( 10 )

Auto ML & Neural Architecture Search (1/2)

Links

 
2/27/19 
( 11 )

Auto ML & Neural Architecture Search (2/2)

Links

 
7 3/4/19 
( 12 )

Autonomous Vehicles

Links

  • Reading Quiz due before class.
  • Autonomous Vehicles Overview [pdfpptx]
  • Presentation: The Architectural Implications of Autonomous Driving[pdf]
 
3/6/19 
( 13 )

Deep Learning Compilers

Links

 
8 3/11/19 
( 14 )

Project Presentation Checkpoints

3/13/19 
( 15 )

Application: Program synthesis

Links

 
9 3/18/19 
( 16 )

Distributed Deep Learning (Part 1)

Links

 
3/20/19 
( 17 )

Distributed Deep Learning (Part 2)

Links

 
10 3/25/19 
( 18 )

Spring Break (March 25th)

3/27/19 
( 19 )

Spring Break (March 27th)

11 4/1/19 
( 20 )

Application: Networking

Links

 
4/3/19 
( 21 )

Dynamic Neural Networks

Links

 
12 4/8/19 
( 22 )

Model Compression

Links

 
4/10/19 
( 23 )

Applications: Security

Links

 
13 4/15/19 
( 24 )

Application: Prediction Serving

Links

 
4/17/19 
( 25 )

Natural Language Processing Systems

Links

 
14 4/22/19 
( 26 )

Explanability & Interpretability

Links

 
4/24/19 
( 27 )

Scheduling for DL Workloads

Links

  • Reading Quiz due before class.
  • DL Scheduling slides [pdf]
  • Dominant Resource Fairness (DRF) slides [pdf]
 
15 4/29/19 
( 28 )

Cortical Learning and Stoica Course Summary

Links

 

Additional Optional Reading

5/1/19 
( 29 )

Neural Modular Networks and Gonzalez Course Summary

Links

  • Reading Quiz due before class.
  • Neural Modular Networks Slides [pdfpptx]
  • Gonzalez Course Summary (Reflections on the Field of AI-Systems) [pdfpptx]
 
16 5/6/19 
( 30 )

RRR Week (May 6th)

5/8/19 
( 31 )

Poster Session from 9:00 to 11:00

17 5/13/19 
( 32 )

Final Reports Due

  • Due at 11:59 PM
  • Format: 8 pages (Google Doc)
  • Email link to jegonzal@berkeley.edu and istoica@berkeley.edu

Projects

Detailed candidate project descriptions will be posted shortly. However, students are encourage to find projects that relate to their ongoing research.

Grading

Grades will be largely based on class participation and projects. In addition, we will require weekly paper summaries submitted before class.

  • Projects: 60%
  • Weekly Summaries: 20%
  • Class Participation: 20%

Back to top

© 2017-2018 UC Berkeley · Privacy · Terms

SysML——AI-Sys Spring 2019的更多相关文章

  1. CSc 352 (Spring 2019): Assignment

    CSc 352 (Spring 2019): Assignment 11Due Date: 11:59PM Wed, May 1The purpose of this assignment is to ...

  2. 聚焦AI实践,2019 A2M峰会将在上海举行!

    18年,BERT重磅发布,刷新了很多NLP的任务的最好性能:KENSHO等智能化应用的成功应用,让知识图谱在证券行业的建设思路和应用实践成为业内较为关注的问题:强化学习也在与人类的对战游戏中独领风骚: ...

  3. The second curriculum design experiment report in spring 2019

    2019年第二次课程设计实验报告 一.实验项目名称 贪吃蛇 二.实验项目功能描述 1.小蛇的移动 玩家可以通过 W A S D控制小蛇的上左下右移动,通过函数改变小蛇部位的位置 2.判断游戏失败 当小 ...

  4. zz 机器学习系统或者SysML&DL笔记

    机器学习系统或者SysML&DL笔记(一)  Oldpan  2019年5月12日  0条评论  971次阅读  1人点赞 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Py ...

  5. 机器学习系统或者SysML&DL笔记(一)

    前言 在使用过TVM.TensorRT等优秀的机器学习编译优化系统以及Pytorch.Keras等深度学习框架后,总觉得有必要从理论上对这些系统进行一些分析,虽然说在实践中学习是最快最直接的(指哪儿打 ...

  6. python学习第二天 -----2019年4月17日

    第二周-第02章节-Python3.5-模块初识 #!/usr/bin/env python #-*- coding:utf-8 _*- """ @author:chen ...

  7. 从《华为的冬天》到AI的冬天 | 甲子光年

    知难不难,惶者生存. 作者 | DougLong 编辑 | 火柴Q.甲小姐 *本文为甲子光年专栏作家DougLong独家稿件.作者为AI从业者.Gary Marcus<Rebooting AI& ...

  8. Flink Forward Asia 2019 - 总结和展望(附PPT下载链接)

    11 月 28 - 30 日,北京迎来了入冬以来的第一场雪,2019 Flink Forward Asia(FFA)也在初雪的召唤下顺利拉开帷幕.尽管天气寒冷,FFA 实际到会人次超过 2000,同比 ...

  9. 技术沙龙|原来落地AI应用是这么回事儿!

    目前人工智能已经迈入应用落地之年,作为备受关注的话题,在重磅政策的加持下市场规模迅速扩大并渗透到各行各业的形势越发鲜明.在此背景下,作为国内不容忽视的创新企业之一,京东AI依托于NeuHub平台对数据 ...

随机推荐

  1. [Algorithm] 1290. Convert Binary Number in a Linked List to Integer

    Given head which is a reference node to a singly-linked list. The value of each node in the linked l ...

  2. Spring Security OAuth2学习

    什么是 oAuth oAuth 协议为用户资源的授权提供了一个安全的.开放而又简易的标准.与以往的授权方式不同之处是 oAuth 的授权不会使第三方触及到用户的帐号信息(如用户名与密码),即第三方无需 ...

  3. java8 LinkedHashMap 原理

    LinkedHashMap 原理 基于jdk1.8 HashMap原理:http://www.cnblogs.com/zhaojj/p/7805376.html LinkedHashMap 继承Has ...

  4. 1+X证书Web前端开发规范手册

    一.规范目的 1.1 概述 为提高团队协作效率, 便于后台人员添加功能及前端后期优化维护, 输出高质量的文档, 特制订此文档. 本规范文档一经确认, 前端开发人员必须按本文档规范进行前台页面开发. 本 ...

  5. 从游击队到正规军:马蜂窝旅游网的IM系统架构演进之路

    本文引用自马蜂窝公众号,由马蜂窝技术团队原创分享. 一.引言 今天,越来越多的用户被马蜂窝持续积累的笔记.攻略.嗡嗡等优质的分享内容所吸引,在这里激发了去旅行的热情,同时也拉动了马蜂窝交易的增长.在帮 ...

  6. sc命令创建和删除服务

    安装服务 sc create 服务名 binPath= "C:\Users\Administrator\Desktop\win32srvDemo\win32srvdemo\Debug\win ...

  7. Linux chattr 文件保护

    Linux chattr 文件保护 chattr命令的用法:chattr [ -RV ] [ -v version ] [ mode ] files…注:最关键的是在[mode]部分,[mode]部分 ...

  8. Spring Cloud Hystrix 熔断器(五)

    序言 感觉hystrix很精彩,文档讲的也很好,这篇总结到哪里是哪里吧 写Hystrix之前,我们先简单的说说熔断器,和限流,这样你看完之后,就可以很容易理解Hystrix 熔断器 熔断器模式源于Ma ...

  9. DAX 第七篇:分组聚合

    DAX有三个用于生成分组聚合数据的函数,这三个函数有两个共同的特征:分组列和扩展列. 分组列是用于分组的列,只能来源于基础表中已存的列,分组列可以来源于同一个表,也可以来源于相关的列. 扩展列是由na ...

  10. NLP第一课(我也是才开始学)

    闲着无聊的时候,我就会问问自己,编程也有了五年经验了,除了增删改查,我还会什么,有一天我跳槽,去面试的时候,我能比那些年轻而且期望薪资待遇低的年轻毕业生,我有什么优势,而且我只是一个专科的机电系学生, ...