【传送门】

求$$\sum_{i=1}^{n} \gcd(\lfloor \sqrt[3]{i} \rfloor, i)$$
题解写的很清楚,自己重新推一推。

$$\sum_{i=1}^{n} \gcd(\lfloor \sqrt[3]{i} \rfloor, i)$$

$$=\sum_{a=1}^{\lfloor\sqrt[3]{n}\rfloor}\sum_{i=1}^{n}\gcd(a, i)[\sqrt[3]{i}=a]$$

$$=\sum_{a=1}^{\lfloor\sqrt[3]{n}\rfloor}\sum_{i=a^3}^{\min\{(a+1)^3-1,n\}}\gcd(a,i)$$

$$=\sum_{i=\lfloor \sqrt[3]{n} \rfloor ^3}^{n}\gcd(\sqrt[3]{n}, i)+\sum_{a=1}^{r}\sum_{i=a^3}^{(a+1)^3-1}\gcd(a,i)$$

其中 $r = \sqrt[3]{n}-1$
设 $f(n,a)=\sum_{i=1}^{n}\gcd(i, a)$
$$f(n,a)=\sum_{i=1}^{n}\gcd(i,a)$$
$$=\sum_{d|a}d\sum_{i=1}^{n}[\gcd(i,a)=d]$$
$$=\sum_{d|a}d\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}[\gcd(i, \frac{a}{d}) =1]$$
$$=\sum_{d|a}d\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{p|\gcd(i,\frac{a}{d})}\mu(p)$$
$$=\sum_{d|a}d\sum_{p|\frac{a}{d}}\mu(p)\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}[p|i]$$
$$=\sum_{d|a}d\sum_{p|\frac{a}{d}}\mu(p)\lfloor \frac{n}{pd} \rfloor$$
$$=\sum_{T|a}\lfloor \frac{n}{T}\rfloor\sum_{p|T}\mu(p)\frac{T}{p}$$
$$=\sum_{T|a}\lfloor \frac{n}{T}\rfloor \varphi(T)$$
第一部分可以 $O(\sqrt{n})$ 解决。

将 $f(n, a)$ 带入第二部分得
$$\sum_{a=1}^r \sum_{i=a}^{(a+1)^3-1}\gcd(a,i)$$
$$=\sum_{a=1}^{r}\sum_{T|a}(\lfloor\frac{(a+1)^3-1}{T}\rfloor - \lfloor\frac{a^3-1}{T}\rfloor)\varphi(T)$$
$$=\sum_{T = 1}^{r}\varphi(T)\sum_{b=1}^{\lfloor\frac{r}{T}\rfloor}(\lfloor\frac{(bT+1)^3-1}{T} \rfloor-\lfloor\frac{(bT)^3-1}{T} \rfloor)$$
$$=\sum_{T=1}^{r}\varphi(T)\sum_{b=1}^{\lfloor\frac{r}{T}\rfloor}(\lfloor b^3T^2+3b^2T+3b\rfloor-\lfloor b^3T^2-\frac{1}{T}\rfloor)$$
$$=\sum_{T=1}^{r}\varphi(T)\sum_{b=1}^{\lfloor\frac{r}{T}\rfloor}(3b^2T+3b+1)$$
$$=\sum_{T=1}^{r}\varphi(T)(3T\sum_{b=1}^{\lfloor\frac{r}{T}\rfloor}b^2+3\sum_{b=1}^{\lfloor\frac{r}{T}\rfloor}b + \lfloor\frac{r}{T}\rfloor)$$

这部分 $O(r)$ 解决。

用太多int128会T。

#include <bits/stdc++.h>

namespace IO {
void read() {}
template <typename T, typename... T2>
inline void read(T &x, T2 &... oth) {
T f = ; x = ;
char ch = getchar();
while (!isdigit(ch)) { if (ch == '-') f = -; ch = getchar(); }
while (isdigit(ch)) { x = x * + ch - ; ch = getchar(); }
x *= f;
read(oth...);
}
}
#define read IO::read
#define print IO::print
#define ll long long
#define int128 __int128 const int MOD = ;
const int inv6 = , inv2 = ;
const int N = 1e7 + ;
int prime[N], phi[N], prin;
bool vis[N]; void init() {
phi[] = ;
for (int i = ; i < N; i++) {
if (!vis[i]) { prime[++prin] = i; phi[i] = i - ; }
for (int j = ; j <= prin && i * prime[j] < N; j++) {
vis[i * prime[j]] = ;
if (i % prime[j] == ) {
phi[i * prime[j]] = prime[j] * phi[i];
break;
}
phi[i * prime[j]] = phi[i] * phi[prime[j]];
}
}
} int root3(int128 n) {
int l = , r = 1e7 + ;
int ans = ;
while (l <= r) {
int128 mid = (l + r) / ;
if (mid * mid * mid <= n) l = mid + , ans = mid;
else r = mid - ;
}
return ans;
} template<class T>
T gcd(T a, T b) {
while (b) {
a %= b;
std::swap(a, b);
}
return a;
} void M(int &a) {
if (a < ) a += MOD;
if (a >= MOD) a -= MOD;
} int f(int128 n, int a) {
int ans = ;
for (int i = ; 1LL * i * i <= a; i++) {
if (a % i) continue;
int128 temp = n / i * phi[i] % MOD;
M(ans += temp);
if (a == i * i) continue;
int j = a / i;
temp = n / j * phi[j] % MOD;
M(ans += temp);
}
return ans;
} int sum_squr(int n) {
int ans = 1LL * n * (n + ) % MOD * ( * n + ) % MOD * inv6 % MOD;
return ans;
} int sum(int n) {
return 1LL * n * (n + ) / % MOD;
} int main() {
init();
int T;
read(T);
while (T--) {
int128 n;
read(n);
if (n <= ) {
int ans = ;
for (int i = ; i <= n; i++)
ans += gcd(, i);
printf("%d\n", ans);
continue;
}
int r = root3(n);
int128 rr = (int128)r * r * r;
int ans = f(n, r) - f(rr - , r);
M(ans);
r--;
for (int i = ; i <= r; i++) {
int y = r / i;
int temp = 3LL * i * sum_squr(y) % MOD;
M(temp += 3LL * sum(y) % MOD);
M(temp += y);
temp = 1LL * temp * phi[i] % MOD;
M(ans += temp);
}
printf("%d\n", ans);
}
return ;
}

HDU 6588 Function的更多相关文章

  1. HDU 5608 function [杜教筛]

    HDU 5608 function 题意:数论函数满足\(N^2-3N+2=\sum_{d|N} f(d)\),求前缀和 裸题-连卷上\(1\)都告诉你了 预处理\(S(n)\)的话反演一下用枚举倍数 ...

  2. HDU 5608 - function

    HDU 5608 - function 套路题 图片来自: https://blog.csdn.net/V5ZSQ/article/details/52116285 杜教筛思想,根号递归下去. 先搞出 ...

  3. HDU 6038 - Function | 2017 Multi-University Training Contest 1

    /* HDU 6038 - Function [ 置换,构图 ] 题意: 给出两组排列 a[], b[] 问 满足 f(i) = b[f(a[i])] 的 f 的数目 分析: 假设 a[] = {2, ...

  4. 洛谷P1464 Function  HDU P1579 Function Run Fun

    洛谷P1464 Function HDU P1579 Function Run Fun 题目描述 对于一个递归函数w(a,b,c) 如果a≤0 or b≤0 or c≤0就返回值11. 如果a> ...

  5. [2019HDU多校第一场][HDU 6588][K. Function]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6588 题目大意:求\(\sum_{i=1}^{n}gcd(\left \lfloor \sqrt[3] ...

  6. HDU 5875 Function 【倍增】 (2016 ACM/ICPC Asia Regional Dalian Online)

    Function Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  7. 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】

    Function Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total ...

  8. HDU 5875 Function 优先队列+离线

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5875 Function Time Limit: 7000/3500 MS (Java/Others) ...

  9. HDU 5875 Function(RMQ-ST+二分)

    Function Time Limit: 7000/3500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total ...

随机推荐

  1. 使用python做一个爬虫GUI程序

    整体思路和之前的一篇博客爬虫豆瓣美女一致,这次加入了图片分类,同时利用tkinter模块做成GUI程序 效果如下: 整体代码如下: # -*- coding:utf-8 -*- import requ ...

  2. Python调用C的DLL(动态链接库)

    开发环境:mingw64位,python3.6 64位 参考博客: mingw编译dll: https://blog.csdn.net/liyuanbhu/article/details/426123 ...

  3. ASP.NET Core 之 Identity 入门(转载)

    原文地址:https://www.cnblogs.com/gongap/p/9504562.html 前言 在 ASP.NET Core 中,仍然沿用了 ASP.NET里面的 Identity 组件库 ...

  4. 探索 ASP.Net Core 3.0系列五:引入IHostLifetime并弄清Generic Host启动交互

    前言:在本文中,我将介绍如何在通用主机之上重新构建ASP.NET Core 3.0,以及由此带来的一些好处. 同时也展示了3.0中引入新的抽象类IHostLifetime,并描述了它在管理应用程序(尤 ...

  5. linux 用du查看硬盘信息

    linux 用du查看硬盘信息 <pre>[root@iZ238qupob7Z web]# df -hFilesystem Size Used Avail Use% Mounted on/ ...

  6. Preface_英语

    这是一本游戏指南.没错,你没有 看错,这就是一本游戏指南.当然,这 本指南针对的只是名为"英文"的游戏. 把英文和电子游戏比较一下,我们 会发现,这两者有惊人的相似之处. 第一,它 ...

  7. vue的双向绑定原理浅析与简单实现

    很久之前看过vue的一些原理,对其中的双向绑定原理也有一定程度上的了解,只是最近才在项目上使用vue,这才决定好好了解下vue的实现原理,因此这里对vue的双向绑定原理进行浅析,并做一个简单的实现. ...

  8. dubbo入门学习

    官方网址:http://dubbo.apache.org/zh-cn/index.html 学习可以参考官网中文文档:http://dubbo.apache.org/zh-cn/docs/user/q ...

  9. JMeter之Http协议接口性能测试--基础

    一.不同角色眼中的接口 1.1,开发人员眼中的接口    1.2,测试人员眼中的接口 二.Http协议基本介绍 2.1,常见的接口协议 1.:2. :3. :4.:5.: 6. 2.2,Http协议栈 ...

  10. c# Hashtable Synchronized vs SyncRoot

    Synchronized vs SyncRoot 我们知道,在.net的一些集合类型中,譬如Hashtable和ArrayList,都有Synchronized静态方法和SyncRoot实例方法,他们 ...