iOS多线程GCD简介(二)
在上一篇中,我们主要讲了Dispatch Queue相关的内容。这篇主要讲一下一些和实际相关的使用实例,Dispatch Groups和Dispatch Semaphore。
dispatch_after
在我们开发过程中经常会用到在多少秒后执行某个方法,通常我们会用这个- (void)performSelector:(SEL)aSelector withObject:(id)anArgument afterDelay:(NSTimeInterval)delay函数。不过现在我们可以使用一个新的方法。
dispatch_time_t delayTime = dispatch_time(DISPATCH_TIME_NOW, 2 * NSEC_PER_SEC);
dispatch_after(delayTime, dispatch_get_main_queue(), ^{
//do your task
});
这样我们就定义了一个延迟2秒后执行的任务。不过在这里有一点需要说明的是,无论你用的是- (void)performSelector:(SEL)aSelector withObject:(id)anArgument afterDelay:(NSTimeInterval)delay还是dispatch_after这个方法。并不是说在你指定的延迟后立即运行,这些方法都是基于单线程的,它只是将你延迟的操作加入到队列里面去。由于队列里面都是FIFO,所以必须在你这个任务之前的操作完成后才会执行你的方法。这个延迟只是大概的延迟。如果你在主线程里面调用这个方法,如果你主线程现在正在处理一个非常耗时的任务,那么你这个延迟可能就会偏差很大。这个时候你可以再开个线程,在里面执行你的延迟操作。
//放到全局默认的线程里面,这样就不必等待当前调用线程执行完后再执行你的方法
dispatch_time_t delayTime = dispatch_time(DISPATCH_TIME_NOW, 2 * NSEC_PER_SEC);
dispatch_after(delayTime, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
//do your task
});
dispatch_once
这个想必大家都非常的熟悉,这个在单例初始化的时候是苹果官方推荐的方法。这个函数可以保证在应用程序中只执行指定的任务一次。即使在多线程的环境下执行,也可以保证百分之百的安全。
static id instance;
static dispatch_once_t predicate;
dispatch_once(&predicate, ^{
//your init
});
return instance;
}
这里面的predicate必须是全局或者静态对象。在多线程下同时访问时,这个方法将被线程同步等待,直到指定的block执行完成。
dispatch_apply
这个方法是执行循环次数固定的迭代,如果在并发的queue里面可以提高性能。比如一个固定次数的for循环
for (int i = 0; i < 1000; i ++) {
NSLog(@"---%d---", i);
}
如果只是在一个线程里面或者在一个串行的队列中是一样的,一个个执行。
现在我们用dispatch_apply来写这个循环:
dispatch_apply([array count], defaultQueue, ^(size_t i) {
NSLog(@"----%@---", array[i]);
});
NSLog(@"end");
这个方法执行后,它将像这个并发队列中不断的提交执行的block。这个i是从0开始的,最后一个是[array count] - 1。
使用这个方法有几个注意点:
- 这个方法调用的时候会阻塞当前的线程,也就是上面的循环全部执行完毕后,才会输出
end。 - 在你使用这个任务进行操作的时候,你应该确保你要执行的各个任务是独立的,而且执行顺序也是无关紧要的。
- 在你使用这个方法的时候,你还是要权衡下整体的性能的,如果你执行的任务时间比线程切换的时间还短。那就得不偿失了。
dispatch_group
在实际开发中,我们可能需要在一组操作全部完成后,才做其他操作。比如上传一组图片,或者下载多个文件。希望在全部完成时给用户一个提示。如果这些操作在串行化的队列中执行的话,那么你可以很明确的知道,当最后一个任务执行完成后,就全部完成了。这样的操作也并木有发挥多线程的优势。我们可以在并发的队列中进行这些操作,但是这个时候我们就不知道哪个是最后一个完成的了。这个时候我们可以借助dispatch_group:
dispatch_group_t group = dispatch_group_create();
dispatch_group_async(group, defaultQueue, ^{
//task1
NSLog(@"1");
});
dispatch_group_async(group, defaultQueue, ^{
//task2
NSLog(@"2");
});
dispatch_group_async(group, defaultQueue, ^{
//task3
NSLog(@"3");
});
dispatch_group_async(group, defaultQueue, ^{
//task4
NSLog(@"4");
});
dispatch_group_async(group, defaultQueue, ^{
//task5
NSLog(@"5");
});
dispatch_group_notify(group, queue, ^{
NSLog(@"finish");
});
我们首先创建一个group然后往里面加入我们要执行的操作,在dispatch_group_notify这个函数里面添加全部完成的操作。上面代码执行的时候,输出的1,2,3,4,5的顺序是不一定的,但是输出的finish一定是在1,2,3,4,5之后。
对于添加到group的操作还有另外一个方法:
dispatch_group_enter(group);
dispatch_group_enter(group);
dispatch_async(defaultQueue, ^{
NSLog(@"1");
dispatch_group_leave(group);
});
dispatch_async(defaultQueue, ^{
NSLog(@"2");
dispatch_group_leave(group);
});
dispatch_group_notify(group, queue, ^{
NSLog(@"finish");
});
我们可以用dispatch_group_enter来表示添加任务,dispatch_group_leave来表示有个任务已经完成了。用这个方法一定要注意必须成双成对。
线程同步
在多线程中一个比较重要的东西就是线程同步的问题。如果多个线程只是对某个资源只是读的过程,那么就不存在这个问题了。如果某个线程对这个资源需要进行写的操作,那这个时候就会出现数据不一致的问题了。
使用dispatch_barrier_async
__block NSString *strTest = @"test";
dispatch_async(defaultQueue, ^{
if ([strTest isEqualToString:@"test"]) {
NSLog(@"--%@--1-", strTest);
[NSThread sleepForTimeInterval:1];
if ([strTest isEqualToString:@"test"]) {
[NSThread sleepForTimeInterval:1];
NSLog(@"--%@--2-", strTest);
} else {
NSLog(@"====changed===");
}
}
});
dispatch_async(defaultQueue, ^{
NSLog(@"--%@--3-", strTest);
});
dispatch_async(defaultQueue, ^{
strTest = @"modify";
NSLog(@"--%@--4-", strTest);
});
看看这个模拟的场景,我们让各个线程去访问这个变量,其中有个操作是要修改这个变量。我们把第一个操作先判断有木有改变,然后故意延迟一下,这个时候我们看下输出结果:
2015-01-03 15:42:21.351 测试[1652:60015] --test--3-
2015-01-03 15:42:21.351 测试[1652:60013] --modify--4-
2015-01-03 15:42:21.351 测试[1652:60014] --test--1-
2015-01-03 15:42:22.355 测试[1652:60014] ====changed===
我们可以看到,再次判断的时候,已经被修改了,如果我们在实际的业务中这样去判断某些关键性的变量,可能就会出现严重的问题。下面看看我们如何使用dispatch_barrier_async来进行同步:
//并发队列
dispatch_queue_t concurrentQueue = dispatch_queue_create("com.gcd.concurrentQueue", DISPATCH_QUEUE_CONCURRENT);
__block NSString *strTest = @"test";
dispatch_async(concurrentQueue, ^{
if ([strTest isEqualToString:@"test"]) {
NSLog(@"--%@--1-", strTest);
[NSThread sleepForTimeInterval:1];
if ([strTest isEqualToString:@"test"]) {
[NSThread sleepForTimeInterval:1];
NSLog(@"--%@--2-", strTest);
} else {
NSLog(@"====changed===");
}
}
});
dispatch_async(concurrentQueue, ^{
NSLog(@"--%@--3-", strTest);
});
dispatch_barrier_async(concurrentQueue, ^{
strTest = @"modify";
NSLog(@"--%@--4-", strTest);
});
dispatch_async(concurrentQueue, ^{
NSLog(@"--%@--5-", strTest);
});
现在看下输出结果:
2015-01-03 16:00:27.552 测试[1786:65947] --test--1-
2015-01-03 16:00:27.552 测试[1786:65965] --test--3-
2015-01-03 16:00:29.553 测试[1786:65947] --test--2-
2015-01-03 16:00:29.553 测试[1786:65947] --modify--4-
2015-01-03 16:00:29.553 测试[1786:65947] --modify--5-
现在我们可以发现操作4用dispatch_barrier_async加入操作后,前面的操作3之前都操作完成之前这个strTest都没有变。而后面的操作都是改变后的值。这样我们的数据冲突的问题就解决了。
现在说明下这个函数干的事情,当这个函数加入到队列后,里面block并不是立即执行的,它会先等待之前正在执行的block全部完成后,才执行,并且在它之后加入到队列中的block也在它操作结束后才能恢复之前的并发执行。我们可以把这个函数理解为一条分割线,之前的操作,之后加入的操作。还有一个点要说明的是这个queue必须是用dispatch_queue_create创建出来的才行。
使用Dispatch Semaphore
dispatch_semaphore_t 类似信号量,可以用来控制访问某一资源访问数量。
使用过程:
- 先创建一个Dispatch Semaphore对象,用整数值表示资源的可用数量
- 在每个任务中,调用dispatch_semaphore_wait来等待
- 获得资源就可以进行操作
- 操作完后调用dispatch_semaphore_signal来释放资源
dispatch_semaphore_t semaphore = dispatch_semaphore_create(1);
__block NSString *strTest = @"test";
dispatch_async(concurrentQueue, ^{
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
if ([strTest isEqualToString:@"test"]) {
NSLog(@"--%@--1-", strTest);
[NSThread sleepForTimeInterval:1];
if ([strTest isEqualToString:@"test"]) {
[NSThread sleepForTimeInterval:1];
NSLog(@"--%@--2-", strTest);
} else {
NSLog(@"====changed===");
}
}
dispatch_semaphore_signal(semaphore);
});
dispatch_async(concurrentQueue, ^{
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
NSLog(@"--%@--3-", strTest);
dispatch_semaphore_signal(semaphore);
});
dispatch_async(concurrentQueue, ^{
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
strTest = @"modify";
NSLog(@"--%@--4-", strTest);
dispatch_semaphore_signal(semaphore);
});
dispatch_async(concurrentQueue, ^{
dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);
NSLog(@"--%@--5-", strTest);
dispatch_semaphore_signal(semaphore);
});
这样我们一样可以保证,线程的数据安全。
iOS多线程GCD简介(二)的更多相关文章
- iOS多线程GCD简介(一)
之前讲过多线程之NSOperation,今天来讲讲代码更加简洁和高效的GCD.下面说的内容都是基于iOS6以后和ARC下. Grand Central Dispatch (GCD)简介 Grand C ...
- iOS 多线程GCD简介
一.简介 1.1 GCD (Grand Central Dispatch )是Apple开发的一个多核编程的解决方法. Grand 含义是“伟大的.宏大的”,Central含义“中央的”,Dispat ...
- iOS多线程 GCD
iOS多线程 GCD Grand Central Dispatch (GCD)是Apple开发的一个多核编程的解决方法. dispatch queue分成以下三种: 1)运行在主线程的Main que ...
- iOS 多线程GCD的基本使用
<iOS多线程简介>中提到:GCD中有2个核心概念:1.任务(执行什么操作)2.队列(用来存放任务) 那么多线程GCD的基本使用有哪些呢? 可以分以下多种情况: 1.异步函数 + 并发队列 ...
- iOS多线程——GCD与NSOperation总结
很长时间以来,我个人(可能还有很多同学),对多线程编程都存在一些误解.一个很明显的表现是,很多人有这样的看法: 新开一个线程,能提高速度,避免阻塞主线程 毕竟多线程嘛,几个线程一起跑任务,速度快,还不 ...
- iOS多线程GCD的使用
1. GCD 简介 Grand Central Dispatch(GCD)是异步执行任务的技术之一.一般将应用程序中记述的线程管理用的代码在系统级中实现.开发者只需要定义想执行的任务并追加到适当的Di ...
- iOS 多线程 GCD part3:API
https://www.jianshu.com/p/072111f5889d 2017.03.05 22:54* 字数 1667 阅读 88评论 0喜欢 1 0. 预备知识 GCD对时间的描述有些新奇 ...
- iOS多线程GCD的简单使用
在iOS开发中,苹果提供了三种多线程技术,分别是: (1)NSThread (2)NSOperation (3)GCD 简单介绍一下GCD的使用. GCD全称 Grand Central Dispat ...
- ios多线程-GCD基本用法
ios中多线程有三种,NSTread, NSOperation,GCD 这篇就讲讲GCD的基本用法 平时比较多使用和看到的是: dispatch_async(dispatch_get_global_q ...
随机推荐
- [转]vscodesvn安装和使用
原文链接:https://blog.csdn.net/wzh66888/article/details/90145340 1.安装svn插件 2.安装成功后会出现这样的图标 如果没有安装之后不能使用, ...
- Android之WebRTC介绍
参考自:Introduction to WebRTC on AndroidAndroid之WebRTC介绍 WebRTC被誉为是web长期开源开发的一个新启元,是近年来web开发的最重要创新.WebR ...
- C# selenium 高级
https://www.cnblogs.com/morang/p/7441091.html https://www.cnblogs.com/tobecrazy/p/4817946.html https ...
- final,static,super,this
## final 关键字 **final关键字主要用在三个地方:变量.方法.类.** 1. **对于一个final变量,如果是基本数据类型的变量,则其数值一旦在初始化之后便不能更改:如果是引用类型的变 ...
- XML读写工具
import java.io.ByteArrayOutputStream; import java.io.File; import java.io.FileOutputStream; import j ...
- vue-cli3用图形化的方式创建项目
Vue脚手架可以快速生成Vue项目基础的架构. A.安装3.x版本的Vue脚手架: npm install -g @vue/cli B.基于3.x版本的脚手架创建Vue项目: 1).使用命令创建Vue ...
- ES-PHP向ES批量添加、查询文档报 No alive nodes found in your cluster
转自: https://blog.csdn.net/itfootball/article/details/53637238 问题描述为了提高保存数据到es消耗的时间,采取积攒到3000条文档的时候才保 ...
- 对javascript中call()方法的理解
call ( thisObj [, arg1 [, arg2 [, [, argN] ] ] ]) call()方法:官方介绍是,调用一个对象的一个方法,以另一个对象替换当前对象. call()方法 ...
- Spring计时器StopWatch使用
我们可以利用已有的工具类中的秒表,常见的秒表工具类有org.springframework.util.StopWatch.org.apache.commons.lang.time.StopWatch以 ...
- python+selenium实现自动化百度搜索关键词
通过python配合爬虫接口利用selenium实现自动化打开chrome浏览器,进行百度关键词搜索. 1.安装python3,访问官网选择对应的版本安装即可,最新版为3.7. 2.安装seleniu ...