任何分组(groupby)操作都涉及原始对象的以下操作之一:

  • 分割对象
  • 应用一个函数
  • 结合的结果

在许多情况下,我们将数据分成多个集合,并在每个子集上应用一些函数。在应用函数中,可以执行以下操作:

  • 聚合 - 计算汇总统计
  • 转换 - 执行一些特定于组的操作
  • 过滤 - 在某些情况下丢弃数据

下面来看看创建一个DataFrame对象并对其执行所有操作 -

import pandas as pd

ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
print (df)

输出结果:

    Points  Rank    Team  Year
0 876 1 Riders 2014
1 789 2 Riders 2015
2 863 2 Devils 2014
3 673 3 Devils 2015
4 741 3 Kings 2014
5 812 4 kings 2015
6 756 1 Kings 2016
7 788 1 Kings 2017
8 694 2 Riders 2016
9 701 4 Royals 2014
10 804 1 Royals 2015
11 690 2 Riders 2017
 

一、将数据拆分成组

Pandas对象可以分成任何对象。有多种方式来拆分对象,如 -

  • obj.groupby(‘key’)
  • obj.groupby([‘key1’,’key2’])
  • obj.groupby(key,axis=1)

现在来看看如何将分组对象应用于DataFrame对象

示例

import pandas as pd

ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
print (df.groupby('Team'))

输出结果:

<pandas.core.groupby.DataFrameGroupBy object at 0x00000245D60AD518>
 

二、查看分组

import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
print (df.groupby('Team').groups)
输出结果:
{
'Devils': Int64Index([2, 3], dtype='int64'),
'Kings': Int64Index([4, 6, 7], dtype='int64'),
'Riders': Int64Index([0, 1, 8, 11], dtype='int64'),
'Royals': Int64Index([9, 10], dtype='int64'),
'kings': Int64Index([5], dtype='int64')
}
 

按多列分组

import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
print (df.groupby(['Team','Year']).groups)

输出结果:

{
('Devils', 2014): Int64Index([2], dtype='int64'),
('Devils', 2015): Int64Index([3], dtype='int64'),
('Kings', 2014): Int64Index([4], dtype='int64'),
('Kings', 2016): Int64Index([6], dtype='int64'),
('Kings', 2017): Int64Index([7], dtype='int64'),
('Riders', 2014): Int64Index([0], dtype='int64'),
('Riders', 2015): Int64Index([1], dtype='int64'),
('Riders', 2016): Int64Index([8], dtype='int64'),
('Riders', 2017): Int64Index([11], dtype='int64'),
('Royals', 2014): Int64Index([9], dtype='int64'),
('Royals', 2015): Int64Index([10], dtype='int64'),
('kings', 2015): Int64Index([5], dtype='int64')
}
 

三、迭代遍历分组

使用groupby对象,可以遍历类似itertools.obj的对象。

import pandas as pd

ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
grouped = df.groupby('Year') for name,group in grouped:
print (name)
print (group)
print ('\n')

输出结果:


Points Rank Team Year
0 876 1 Riders 2014
2 863 2 Devils 2014
4 741 3 Kings 2014
9 701 4 Royals 2014

Points Rank Team Year
1 789 2 Riders 2015
3 673 3 Devils 2015
5 812 4 kings 2015
10 804 1 Royals 2015

Points Rank Team Year
6 756 1 Kings 2016
8 694 2 Riders 2016

Points Rank Team Year
7 788 1 Kings 2017
11 690 2 Riders 2017
 

默认情况下,groupby对象具有与分组名相同的标签名称。

四、选择一个分组

使用get_group()方法,可以选择一个组。参考以下示例代码 -

import pandas as pd

ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
grouped = df.groupby('Year')
print (grouped.get_group(2014))

输出结果:

   Points  Rank    Team  Year
0 876 1 Riders 2014
2 863 2 Devils 2014
4 741 3 Kings 2014
9 701 4 Royals 2014
 

五、聚合

聚合函数为每个组返回单个聚合值。当创建了分组(group by)对象,就可以对分组数据执行多个聚合操作。

应用单个聚合函数

import pandas as pd
import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
grouped = df.groupby('Year')
print (grouped['Points'].agg(np.mean))

输出结果:

Year
2014 795.25
2015 769.50
2016 725.00
2017 739.00
Name: Points, dtype: float64
 

另一种查看每个分组的大小的方法是应用size()函数 -

import pandas as pd
import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
grouped = df.groupby('Team')
print (grouped.agg(np.size))

输出结果:

Team
Devils 2 2 2
Kings 3 3 3
Riders 4 4 4
Royals 2 2 2
kings 1 1 1
 

一次应用多个聚合函数

通过分组系列,还可以传递函数的列表或字典来进行聚合,并生成DataFrame作为输出

import pandas as pd
import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data) print(df)
print('\n') grouped = df.groupby('Team')
agg = grouped['Points'].agg([np.sum, np.mean, np.std])
print (agg)

输出结果:

      Team  Rank  Year  Points
0 Riders 1 2014 876
1 Riders 2 2015 789
2 Devils 2 2014 863
3 Devils 3 2015 673
4 Kings 3 2014 741
5 kings 4 2015 812
6 Kings 1 2016 756
7 Kings 1 2017 788
8 Riders 2 2016 694
9 Royals 4 2014 701
10 Royals 1 2015 804
11 Riders 2 2017 690 sum mean std
Team
Devils 1536 768.000000 134.350288
Kings 2285 761.666667 24.006943
Riders 3049 762.250000 88.567771
Royals 1505 752.500000 72.831998
kings 812 812.000000 NaN

 

六、转换

分组或列上的转换返回索引大小与被分组的索引相同的对象。因此,转换应该返回与组块大小相同的结果。

import pandas as pd
import numpy as np ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
grouped = df.groupby('Team')
score = lambda x: (x - x.mean()) / x.std()*10
print (grouped.transform(score))

输出结果:

       Points       Rank       Year
0 12.843272 -15.000000 -11.618950
1 3.020286 5.000000 -3.872983
2 7.071068 -7.071068 -7.071068
3 -7.071068 7.071068 7.071068
4 -8.608621 11.547005 -10.910895
5 NaN NaN NaN
6 -2.360428 -5.773503 2.182179
7 10.969049 -5.773503 8.728716
8 -7.705963 5.000000 3.872983
9 -7.071068 7.071068 -7.071068
10 7.071068 -7.071068 7.071068
11 -8.157595 5.000000 11.618950
 

七、过滤

过滤根据定义的标准过滤数据并返回数据的子集。filter()函数用于过滤数据。

import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]} df = pd.DataFrame(ipl_data)
filter = df.groupby('Team').filter(lambda x: len(x) >= 3)
print (filter)

输出结果:

    Points  Rank    Team  Year
0 876 1 Riders 2014
1 789 2 Riders 2015
4 741 3 Kings 2014
6 756 1 Kings 2016
7 788 1 Kings 2017
8 694 2 Riders 2016
11 690 2 Riders 2017
 

在上述过滤条件下,要求返回三次以上参加IPL的队伍。

Pandas | GroupBy 分组的更多相关文章

  1. pandas groupby 分组操作

    最一般化的groupby 方法是apply. tips=pd.read_csv('tips.csv') tips[:5] 新生成一列 tips['tip_pct']=tips['tip']/tips[ ...

  2. pandas获取groupby分组里最大值所在的行,获取第一个等操作

    pandas获取groupby分组里最大值所在的行 10/May 2016 python pandas pandas获取groupby分组里最大值所在的行 如下面这个DataFrame,按照Mt分组, ...

  3. pandas之groupby分组与pivot_table透视表

    zhuanzi: https://blog.csdn.net/qq_33689414/article/details/78973267 pandas之groupby分组与pivot_table透视表 ...

  4. pandas之groupby分组与pivot_table透视

    一.groupby 类似excel的数据透视表,一般是按照行进行分组,使用方法如下. df.groupby(by=None, axis=0, level=None, as_index=True, so ...

  5. c# Linq及Lamda表达式应用经验之 GroupBy 分组

    示例1: GroupBy 分组在List<>泛型中的应用 原表: 按姓名Nam 分组后结果: 对DATATABLE 进行LAMDA查询时必须在项目的引用中添加 System.Data.Da ...

  6. itertools.groupby()分组字典列表

    ## itertools.groupby()分组字典列表数据 from operator import itemgetter from itertools import groupby student ...

  7. (转)c# Linq及Lamda表达式应用经验之 GroupBy 分组

    本文转载自:http://www.cnblogs.com/han1982/p/4138163.html 示例1: GroupBy 分组在List<>泛型中的应用 原表: 按姓名Nam 分组 ...

  8. C# Linq及Lamda表达式实战应用之 GroupBy 分组统计

    在项目中做统计图表的时候,需要对查询出来的列表数据进行分组统计,首先想到的是避免频繁去操作数据库可以使用 Linq eg: //例如对列表中的Cu元素进行按年GroupBy分组统计 //包含年份,平均 ...

  9. laravel groupby分组问题。

    laravel 5.7使用groupBy分组查询时会提示一个错误,但是sql可以执行. 因为:mysql从5.7以后,默认开启了严格模式. 解决方法:将/config/database.php 中:关 ...

随机推荐

  1. ASP.NET Core基于微软微服务eShopOnContainer事件总线EventBus的实现

    这个EventBus的实现是基于微软微服务https://github.com/dotnet-architecture/eShopOnContainers项目的,我把它从项目中抽离出来,打包成nuge ...

  2. API管理之YApi实现前后端高度分离

    全手打原创,转载请标明出处:https://www.cnblogs.com/dreamsqin/p/11972789.html,多谢,=.=~ 背景描述   前后端分离已成为互联网项目开发的业界标准使 ...

  3. 【BZOJ4487】[JSOI2015]染色问题(容斥)

    [BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那 ...

  4. Markdown温故知新(4):更多扩展语法及HTML

    1.强调(删除 & 高亮) 2.脚注(注脚) 3.数学公式 4.更多扩展语法 5.终极扩展之内嵌 HTML 5.1.文本修饰类标签 5.2.内容排版类标签 5.3.图片及多媒体标签 5.4.锚 ...

  5. H5页面基础元素

    H5页面结构元素示例 <!DOCTYPE html> <html lang="zh"> <head> <meta charset=&quo ...

  6. golang下载图片,而非预览

    1 前言 网上查询使用html5,a增加属性download和使用表单get,post提交,都是只能预览,根本原因是返回值需要加入头 w.Header().Add("Content-Type ...

  7. 微服务架构 ------ Dockerfile定制镜像

    Docker容器不仅仅是运行原生的容器,而是把我们的具体的项目能够布置到容器上面去,这就是Docker定制镜像需要做的事情.  Docker容器 = new Docker镜像  镜像相当于类,容器相当 ...

  8. 对比ubuntu与centos系统 ​​​​

    CentOS与Ubuntu该如何选择,哪个更好用.笔者在自媒体平台收集了一些网友的观点,较为经典,分享给大家.至于应该选择哪个,希望看完本文章后,读者心中有数. 观点1:CentOS适用于服务器,Ub ...

  9. Winform中设置ZedGraph的曲线为折线、点折线、散点图

    场景 Winform中设置ZedGraph的曲线为散点图: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/102465399 在上 ...

  10. Java代码中可以优化性能的小细节

    避免对boolean类型的判定 反例: 12 if("a".equles("a")==true)`{} 正例: 12 if(Objects.equles(&qu ...