1.素数:

  质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数

2016年1月,发现世界上迄今为止最大的素数,长达2233万位,如果用普通字号将它打印出来长度将超过65公里。

  合数:合数的因数中1和其本身成为平凡因数,其余因数成为真因数。

  孪生素数:由大到小排列,相邻的一对素数若是中间只相隔一个数,则这对素数是孪生素数。

  费尔马素数:马数是以数学家费马命名一组自然数,具有形式: 其中 n 为非负整数。若 2n + 1 是素数,可以得到 n 必须是2的幂。(若 n = ab,其中 1 < a, b < n 且 b 为奇数,则 2n + 1 ≡ (2a)b + 1 ≡ (−1)b + 1 ≡ 0 (mod 2a + 1)。)也就是说,所有具有形式 2n + 1 的素数必然是费马数,这些素数称为费马素数。已知的费马素数只有 F0 至 F4 五个。

法国数学家费马于1640年提出了以下猜想:揭示了十进制二进制的关系可以发现前5个是质数,因为第6个数实在太大了,费马认为这个数
                                                                         费马数
 

是质数。由此提出(费马没给出证明),形如

 

的数都是质数的猜想。后来人们就把形如

的数叫费马数。
 
  
 
 
 
 
 
 
 
 
 
 
 
 
            莫比乌斯函数完整定义的通俗表达:
            1)莫比乌斯函数μ(n)的定义域是N
            2)μ(1)=1
            3)当n存在平方因子时,μ(n)=0
            4)当n是素数或奇数个不同素数之积时,μ(n)=-1
            5)当n是偶数个不同素数之积时,μ(n)=1
            前50个莫比乌斯函数值绘制如下:
            

 数论就暂时先整理到这里啦,告一段落~~

OI 数论整理的更多相关文章

  1. cyyz : Day 1 数论整理

    声明:感谢修改这篇博客的dsr Day 1 先说一下上午的听课吧,哎~,简直了,简直(⊙o⊙)…咋说呢,引人入胜???No! 是昏昏欲睡好吧...一点听课欲都没有(强撑....),一上午停下来简直怀疑 ...

  2. 【学习笔记】OI模板整理

    CSP2019前夕整理一下模板,顺便供之后使用 0. 非算法内容 0.1. 读入优化 描述: 使用getchar()实现的读入优化. 代码: inline int read() { int x=0; ...

  3. 等价类计数:Burnside引理 & Polya定理

    提示: 本文并非严谨的数学分析,有很多地方是自己瞎口胡的,仅供参考.有错误请不吝指出 :p 1. 群 1.1 群的概念 群 \((S,\circ)\) 是一个元素集合 \(S\) 和一种二元运算 $ ...

  4. 【数学】NOIP数论内容整理

    NOIP数论内容整理 注:特别感谢sdsy的zxy神仙以及lcez的tsr筮安帮助审稿 一.整除: 对于\(a,b~\in~Z\),若\(\exists~k~\in~Z\),\(s.t.~b~=~k~ ...

  5. [OI]省选前模板整理

    省选前把板子整理一遍,如果发现有脑抽写错的情况,欢迎各位神犇打脸 :) 数学知识 数论: //组合数 //C(n,m) 在n个数中选m个的方案数 ll C[N][N]; void get_C(int ...

  6. ACM&OI 基础数论算法专题

    ACM&OI 基础数学算法专题 一.数论基础 质数及其判法 (已完结) 质数的两种筛法 (已完结) 算数基本定理与质因数分解 (已完结) 约数与整除 (已完结) 整除分块 (已完结) 最大公约 ...

  7. 啥也不是 -「OI 易犯错误整理」

    原帖出自 Nefelibata,不过他不想维护,所以就交给 STrAduts 了 awa.因为一些不可抗力,帖主转移至 XSC062.申请置顶! 前言 Nefelibata:因为笔者弱到无法形容,因此 ...

  8. $\mathcal{OI}$生涯中的各种数论算法的证明

    嗯,写这个是因为我太弱了\(ORZ\). #\(\mathcal{\color{silver}{1 \ \ Linear \ \ Sieve \ \ Method \ \ of \ \ Prime}} ...

  9. OI题目类型总结整理

    ## 本蒟蒻的小整理qwq--持续更新(咕咕咕) 数据结构 数据结构 知识点梳理 数据结构--线段树 推荐yyb dalao的总结--戳我 以后维护线段树还是把l,r写到struct里面吧,也别写le ...

随机推荐

  1. Solr版本安装部署指南

    一.依赖包 1.  JDK 1.6以上 2.  solr-4.3.0.tgz 3.  Tomcat或者jetty(注意,solr包中本身就含有jetty的启动相关内容):apache-tomcat-7 ...

  2. 历史管理 onhashchange

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  3. CAD交互绘制矩形批注(网页版)

    js中实现代码说明: 动态拖放时的绘制事件: function DynWorldDrawComment2( pCustomEntity,pWorldDraw, curPt) { // 得到绘制参数. ...

  4. shell脚本,一个shell的启动流程。

    #一个shell的启动流程 #shell有一些变量,叫做环境变量,这些变量是可以继承的, #比如父shell有$UID,子shell也可以有,而且继承父shell的. #正常我们声明一个变量,a=,在 ...

  5. iOS 面试集锦2

    4.写一个setter方法用于完成@property (nonatomic,retain)NSString *name,写一个setter方法用于完成@property(nonatomic,copy) ...

  6. 如何用DOM 元素就能画出国宝熊猫

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/odKrpy 可交互视频教 ...

  7. 七周成为数据分析师04_Excel

    Excel适用于敏捷.快速.需要立即响应的需求: 而 Python.BI 等适用于常规.频繁.可复用可工程化的需求 设计到 Excel 的内容主要需要进行实操练习,这里只做一个陈列,具体知识请参考: ...

  8. WPF IP地址输入控件的实现

    一.前言 WPF没有内置IP地址输入控件,因此我们需要通过自己定义实现. 我们先看一下IP地址输入控件有什么特性: 输满三个数字焦点会往右移 键盘←→可以空光标移动 任意位置可复制整段IP地址,且支持 ...

  9. Puppet 安装配置

    环境说明: OS:CentOS 5.4 i386 puppetmaster    192.168.0.12    hostname: puppetmaster.info.com client      ...

  10. ubuntu ssh连接服务器保持长时间不断

    方法: ssh -o serveraliveinterval=60 username@ip