[ZJOI2005]午餐 (贪心,动态规划)
题目描述
上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂。这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭。由于每个人的口味(以及胃口)不同,所以他们要吃的菜各有不同,打饭所要花费的时间是因人而异的。另外每个人吃饭的速度也不尽相同,所以吃饭花费的时间也是可能有所不同的。
THU ACM小组的吃饭计划是这样的:先把所有的人分成两队,并安排好每队中各人的排列顺序,然后一号队伍到一号窗口去排队打饭,二号队伍到二号窗口去排队打饭。每个人打完饭后立刻开始吃,所有人都吃完饭后立刻集合去六教地下室进行下午的训练。
现在给定了每个人的打饭时间和吃饭时间,要求安排一种最佳的分队和排队方案使得所有人都吃完饭的时间尽量早。
假设THU ACM小组在时刻0到达十食堂,而且食堂里面没有其他吃饭的同学(只有打饭的师傅)。每个人必须而且只能被分在一个队伍里。两个窗口是并行操作互不影响的,而且每个人打饭的时间是和窗口无关的,打完饭之后立刻就开始吃饭,中间没有延迟。
现在给定N个人各自的打饭时间和吃饭时间,要求输出最佳方案下所有人吃完饭的时刻。
输入输出格式
输入格式:
第一行一个整数N,代表总共有N个人。
以下N行,每行两个整数 Ai,Bi。依次代表第i个人的打饭时间和吃饭时间。
输出格式:
一个整数T,代表所有人吃完饭的最早时刻。
输入输出样例
输入样例#1:
5
2 2
7 7
1 3
6 4
8 5
输出样例#1:
17
说明
所有输入数据均为不超过200的正整数。
Solution
考虑贪心.
给出贪心条件证明:
令当前,有两个人分别为 a,b,且满足 a 在 b 前为更优解.
排队和吃饭时间分别为:
\]
那么当前如果 a 在 b前,所需要花费的时间即为:
\]
同理,如果 b 在 a 前,所需花费的时间为:
\]
因为满足 a 在 b 前条件更优,即满足关系:
\]
以上贪心是一列队的做法,对于两列,考虑DP.
**定义状态:**
$$f[i][j]$$
表示到了第 i 个人,第1队**打饭时间** (不包括吃饭)为 j 时的最小集合时间.
转移方程
对于第 i 个人,它有两种情况.
- 去第一队
\]
- 去第二队
\]
其中 sum 代表排序之后的排队前缀和.
#include<bits/stdc++.h>
using namespace std;
const int maxn=208;
struct sj{
int c;
int d;
}a[maxn];
bool cmp(sj s,sj j)
{return s.d+max(s.c,j.c+j.d)<j.d+max(j.c,s.c+s.d);}
int n,sum[maxn];
int f[maxn][maxn*maxn];
int main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i].d>>a[i].c;
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+a[i].d;
memset(f,127,sizeof(f));
int inf=f[0][0];
f[0][0]=0;
for(int i=0;i<n;i++)
for(int j=0;j<=sum[i];j++)
{
if(f[i][j]==inf)
continue;
f[i+1][j+a[i+1].d]=min(f[i+1][j+a[i+1].d],max(j+a[i+1].d+a[i+1].c,f[i][j]));
f[i+1][j]=min(f[i+1][j],max(f[i][j],a[i+1].c+sum[i]-j+a[i+1].d));
}
int ans=19260817;
for(int i=0;i<=sum[n];i++)
ans=min(ans,f[n][i]);
cout<<ans<<endl;
return 0;
}
[ZJOI2005]午餐 (贪心,动态规划)的更多相关文章
- Luogu2577 | [ZJOI2005]午餐 (贪心+DP)
题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行 \(N\) 人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的口味(以及胃口)不同,所以他 ...
- luogu2577 [ZJOI2005] 午餐 贪心
题目大意 THU ACM小组的吃饭计划是这样的:先把所有的人分成两队,并安排好每队中各人的排列顺序,然后一号队伍到一号窗口去排队打饭,二号队伍到二号窗口去排队打饭.每个人打完饭后立刻开始吃,所有人都吃 ...
- luogu 2577 [ZJOI2005]午餐 贪心+dp
发现让 $b$ 更大的越靠前越优,然后依次决策将每个人分给哪个窗口. 令 $f[i][j]$ 表示考虑了前 $i$ 个人,且第一个窗口的总等待时间为 $j$ 的最小总时间. 然后转移一下就好了~ #i ...
- [ZJOI2005]午餐 (DP)
[ZJOI2005]午餐 题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的口味(以及胃口 ...
- Luogu P2577 [ZJOI2005]午餐(dp)
P2577 [ZJOI2005]午餐 题面 题目描述 上午的训练结束了, \(THU \ ACM\) 小组集体去吃午餐,他们一行 \(N\) 人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时 ...
- 【BZOJ1899】午餐(动态规划)
[BZOJ1899]午餐(动态规划) 题面 BZOJ 题解 我太弱了 这种\(dp\)完全做不动.. 首先,感性理解一些 如果所有人都要早点走, 那么,吃饭时间长的就先吃 吃饭时间短的就晚点吃 所以, ...
- 【51Nod】1510 最小化序列 贪心+动态规划
[题目]1510 最小化序列 [题意]给定长度为n的数组A和数字k,要求重排列数组从而最小化: \[ans=\sum_{i=1}^{n-k}|A_i-A_{i+k}|\] 输出最小的ans,\(n \ ...
- [洛谷P2577] [ZJOI2005]午餐
洛谷题目链接:[ZJOI2005]午餐 题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的 ...
- 洛谷P2577 [ZJOI2005]午餐 打饭时间作为容量DP
P2577 [ZJOI2005]午餐 )逼着自己做DP 题意: 有n个人打饭,每个人都有打饭时间和吃饭时间.有两个打饭窗口,问如何安排可以使得总用时最少. 思路: 1)可以发现吃饭时间最长的要先打饭. ...
随机推荐
- sysdig安装和使用介绍
安装步骤1)安装资源库rpm --import https://s3.amazonaws.com/download.draios.com/DRAIOS-GPG-KEY.publiccurl -s -o ...
- POJ 2955 Brackets (区间DP,常规)
题意: 给出一个字符串,其中仅仅含 “ ( ) [ ] ” 这4钟符号,问最长的合法符号序列有多长?(必须合法的配对,不能混搭) 思路: 区间DP的常规问题吧,还是枚举区间[i->j]再枚举其中 ...
- 如何解决源码安装软件中make时一直重复打印configure信息
在通过源码安装软件时,会出现执行./configure后再make时总是重复打印configure的信息,无法进入下一阶段的安装. 主要原因是系统当前的时间与实际时间不一致,特别是在虚拟机上经常会出现 ...
- 我用ABAP做过的那些无聊的事情
国庆大假马上就要来临了,我们聊点轻松的话题,关于假期. Jerry的成都同事李贝宁(Li Ben), <SAP成都研究院李三郎:SCP Application Router简介>的作者,有 ...
- 访问修饰符(C# 参考)
第一篇 就抄写了一下下MSDN上面的东西练练手吧!!! 访问修饰符是一些关键字,用于指定声明的成员或类型的可访问性. 本节介绍四个访问修饰符: public protected ...
- UVA - 11082 Matrix Decompressing (最大流,技巧)
很经典的网络流模型,行编号和列编号分别看成一个点,行和列和分别看出容量,一个点(x,y)看出是一条边,边的容量下界是1,所以先减去1,之后在加上就好了. 建图的时候注意分配好编号,解从残留网络中的边找 ...
- Linux中fork函数的例子
- OracleDBConsole启动不了
今天要用OEM,然后去打开OracleDBConsoleXXX, 提示说什么么么2,然后就各种百度...最后发现...有断了网络连接之后就可以把它启动了...简直惨,不知道这是什么原理,还有Oracl ...
- OpenCV2:第八章 界面事件
一.简介 OpenCV中提供了程序界面中的鼠标和键盘事件 二.鼠标事件 // 设置鼠标回调函数 void setMouseCallback ( const string& winname, ...
- _IO_FILE
hctf2017的babyprintf解法是house of orange,深入学习了一下,牵扯出许多知识,这里先进行第一步:_IO_FILE结构 0x00 _IO_FILE glibc-2.2.1\ ...