[ZJOI2005]午餐 (贪心,动态规划)
题目描述
上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂。这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭。由于每个人的口味(以及胃口)不同,所以他们要吃的菜各有不同,打饭所要花费的时间是因人而异的。另外每个人吃饭的速度也不尽相同,所以吃饭花费的时间也是可能有所不同的。
THU ACM小组的吃饭计划是这样的:先把所有的人分成两队,并安排好每队中各人的排列顺序,然后一号队伍到一号窗口去排队打饭,二号队伍到二号窗口去排队打饭。每个人打完饭后立刻开始吃,所有人都吃完饭后立刻集合去六教地下室进行下午的训练。
现在给定了每个人的打饭时间和吃饭时间,要求安排一种最佳的分队和排队方案使得所有人都吃完饭的时间尽量早。
假设THU ACM小组在时刻0到达十食堂,而且食堂里面没有其他吃饭的同学(只有打饭的师傅)。每个人必须而且只能被分在一个队伍里。两个窗口是并行操作互不影响的,而且每个人打饭的时间是和窗口无关的,打完饭之后立刻就开始吃饭,中间没有延迟。
现在给定N个人各自的打饭时间和吃饭时间,要求输出最佳方案下所有人吃完饭的时刻。
输入输出格式
输入格式:
第一行一个整数N,代表总共有N个人。
以下N行,每行两个整数 Ai,Bi。依次代表第i个人的打饭时间和吃饭时间。
输出格式:
一个整数T,代表所有人吃完饭的最早时刻。
输入输出样例
输入样例#1:
5
2 2
7 7
1 3
6 4
8 5
输出样例#1:
17
说明
所有输入数据均为不超过200的正整数。
Solution
考虑贪心.
给出贪心条件证明:
令当前,有两个人分别为 a,b,且满足 a 在 b 前为更优解.
排队和吃饭时间分别为:
\]
那么当前如果 a 在 b前,所需要花费的时间即为:
\]
同理,如果 b 在 a 前,所需花费的时间为:
\]
因为满足 a 在 b 前条件更优,即满足关系:
\]
以上贪心是一列队的做法,对于两列,考虑DP.
**定义状态:**
$$f[i][j]$$
表示到了第 i 个人,第1队**打饭时间** (不包括吃饭)为 j 时的最小集合时间.
转移方程
对于第 i 个人,它有两种情况.
- 去第一队
\]
- 去第二队
\]
其中 sum 代表排序之后的排队前缀和.
#include<bits/stdc++.h>
using namespace std;
const int maxn=208;
struct sj{
int c;
int d;
}a[maxn];
bool cmp(sj s,sj j)
{return s.d+max(s.c,j.c+j.d)<j.d+max(j.c,s.c+s.d);}
int n,sum[maxn];
int f[maxn][maxn*maxn];
int main()
{
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i].d>>a[i].c;
sort(a+1,a+n+1,cmp);
for(int i=1;i<=n;i++)
sum[i]=sum[i-1]+a[i].d;
memset(f,127,sizeof(f));
int inf=f[0][0];
f[0][0]=0;
for(int i=0;i<n;i++)
for(int j=0;j<=sum[i];j++)
{
if(f[i][j]==inf)
continue;
f[i+1][j+a[i+1].d]=min(f[i+1][j+a[i+1].d],max(j+a[i+1].d+a[i+1].c,f[i][j]));
f[i+1][j]=min(f[i+1][j],max(f[i][j],a[i+1].c+sum[i]-j+a[i+1].d));
}
int ans=19260817;
for(int i=0;i<=sum[n];i++)
ans=min(ans,f[n][i]);
cout<<ans<<endl;
return 0;
}
[ZJOI2005]午餐 (贪心,动态规划)的更多相关文章
- Luogu2577 | [ZJOI2005]午餐 (贪心+DP)
题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行 \(N\) 人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的口味(以及胃口)不同,所以他 ...
- luogu2577 [ZJOI2005] 午餐 贪心
题目大意 THU ACM小组的吃饭计划是这样的:先把所有的人分成两队,并安排好每队中各人的排列顺序,然后一号队伍到一号窗口去排队打饭,二号队伍到二号窗口去排队打饭.每个人打完饭后立刻开始吃,所有人都吃 ...
- luogu 2577 [ZJOI2005]午餐 贪心+dp
发现让 $b$ 更大的越靠前越优,然后依次决策将每个人分给哪个窗口. 令 $f[i][j]$ 表示考虑了前 $i$ 个人,且第一个窗口的总等待时间为 $j$ 的最小总时间. 然后转移一下就好了~ #i ...
- [ZJOI2005]午餐 (DP)
[ZJOI2005]午餐 题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的口味(以及胃口 ...
- Luogu P2577 [ZJOI2005]午餐(dp)
P2577 [ZJOI2005]午餐 题面 题目描述 上午的训练结束了, \(THU \ ACM\) 小组集体去吃午餐,他们一行 \(N\) 人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时 ...
- 【BZOJ1899】午餐(动态规划)
[BZOJ1899]午餐(动态规划) 题面 BZOJ 题解 我太弱了 这种\(dp\)完全做不动.. 首先,感性理解一些 如果所有人都要早点走, 那么,吃饭时间长的就先吃 吃饭时间短的就晚点吃 所以, ...
- 【51Nod】1510 最小化序列 贪心+动态规划
[题目]1510 最小化序列 [题意]给定长度为n的数组A和数字k,要求重排列数组从而最小化: \[ans=\sum_{i=1}^{n-k}|A_i-A_{i+k}|\] 输出最小的ans,\(n \ ...
- [洛谷P2577] [ZJOI2005]午餐
洛谷题目链接:[ZJOI2005]午餐 题目描述 上午的训练结束了,THU ACM小组集体去吃午餐,他们一行N人来到了著名的十食堂.这里有两个打饭的窗口,每个窗口同一时刻只能给一个人打饭.由于每个人的 ...
- 洛谷P2577 [ZJOI2005]午餐 打饭时间作为容量DP
P2577 [ZJOI2005]午餐 )逼着自己做DP 题意: 有n个人打饭,每个人都有打饭时间和吃饭时间.有两个打饭窗口,问如何安排可以使得总用时最少. 思路: 1)可以发现吃饭时间最长的要先打饭. ...
随机推荐
- js获取元素的页面坐标
一.DOM中各种宽度.高度 二.DOM中的坐标系 JS获取div元素的宽度 offsetWidth=width+padding-left+padding-right+border-left+borde ...
- MySQL从服务配置文件
[mysql]port=3306socket=/var/lib/mysql/mysql.sockdefault-character-set = utf8mb4 [mysqld]server-id=2l ...
- 连接MongoDB数据库的配置说明
- sqlserver中drop、truncate和delete语句的用法
虽然小编不建议大家去用命令删除数据库表中的东西,但是这些删除命令总有用的着的地方. 说到删除表数据的关键字,大家记得最多的可能就是delete了 然而我们做数据库开发,读取数据库数据.对另外的两兄弟用 ...
- 增加和减少mongodb复制集中的节点
MongoDB Replica Sets不仅提供高可用性的解决方案,同时也提供负载均衡的解决方案,增减 Replica Sets节点在实际应用中非常普通.例如,当应用的读压力暴增时,3台节点的环境已不 ...
- tcpdump简单使用
1.使用wincap将文件放入系统任意路径, 2.进入系统,赋文件可执行权限, 3.输入命令:./tcpdump -i eth0 -s 0 -w xxx.pcap 4.进行数据交互 5.退出程序运行, ...
- java面试基础篇(三)
1.Q:ArrayList 和 LinkedList 有什么区别? A:ArrayList查询快!LinkedList增删快.ArrayList是基于索引的数据接口,它的底层是数组.空间占用相对小一些 ...
- VIM C语言函数名高亮
VIM默认情况下,函数名是不会高亮的,将下面这段代码添加到/usr/share/vim/vim73/syntax/c.vim文件的末尾即可: "highlight Functions s ...
- plsql循环的简单实例
declare v_id tbl_regions.regions_id%type; begin .. loop select t.regions_id into v_id from tbl_regio ...
- 理解GloVe模型(Global vectors for word representation)
理解GloVe模型 概述 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息.输入:语料库输出:词向量方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学 ...