XOR and Favorite Number Codeforces - 617E || [CQOI2018]异或序列
https://www.luogu.org/problemnew/show/P4462
http://codeforces.com/problemset/problem/617/E
这个是莫队裸题了吧。。。
然而,注意:
1.答案开longlong
2.要用桶来代替map/unordered_map,不然会T;桶的大小要大于两倍值域(这是较松的上限,实际上限就是值域内两个数异或能得到的最大值,大概就是值域转换成二进制后每一位变成1后再转回十进制得到的值吧)
CF
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
int sum[];
int l=,r=,blo,n,m,k;LL ans;
int s1[],s2[];
struct Q
{
int l,r,num;LL ans;
}q[];
bool operator<(const Q &a,const Q &b)
{
return ((a.l-)/blo==(b.l-)/blo)?a.r<b.r:a.l<b.l;
}
bool cmp(const Q &a,const Q &b)
{
return a.num<b.num;
}
void addR()
{
++r;
s1[sum[r-]]++;s2[sum[r]]++;
ans+=s1[sum[r]^k];
}
void delR()
{
ans-=s1[sum[r]^k];
s1[sum[r-]]--;
s2[sum[r]]--;
--r;
}
void addL()
{
--l;
s1[sum[l-]]++;s2[sum[l]]++;
ans+=s2[sum[l-]^k];
}
void delL()
{
ans-=s2[sum[l-]^k];
s1[sum[l-]]--;
s2[sum[l]]--;
++l;
}
int main()
{
int i;
scanf("%d%d%d",&n,&m,&k);blo=sqrt(n+0.5);
for(i=;i<=n;i++) scanf("%d",&sum[i]),sum[i]^=sum[i-];
for(i=;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].num=i;
sort(q+,q+m+);
for(i=;i<=m;i++)
{
//printf("%d %d\n",q[i].l,q[i].r);
while(r<q[i].r) addR();
while(l>q[i].l) addL();
while(r>q[i].r) delR();
while(l<q[i].l) delL();
q[i].ans=ans;
}
sort(q+,q+m+,cmp);
for(i=;i<=m;i++) printf("%lld\n",q[i].ans);
return ;
}
XOR and Favorite Number Codeforces - 617E || [CQOI2018]异或序列的更多相关文章
- XOR and Favorite Number CodeForces - 617E -莫队-异或前缀和
CodeForces - 617E 给n个数, m个询问, 每次询问问你[l, r]区间内有多少对(i, j), 使得a[i]^a[i+1]^......^a[j]结果为k.(注意 i ! = j) ...
- XOR and Favorite Number CodeForces - 617E(前缀异或+莫队)
题意原文地址:https://blog.csdn.net/chenzhenyu123456/article/details/50574169 题意:有n个数和m次查询,每次查询区间[l, r]问满足a ...
- XOR and Favorite Number CodeForces - 617E
a[i]^a[i+1]--a[j]=k; 处理前缀和pre[i] 那么上式可以表示为pre[i-1]^pre[j]=k; #include<bits/stdc++.h> using nam ...
- bzoj 5301 [Cqoi2018]异或序列 莫队
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 155[Submit][Status ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 「luogu4462」[CQOI2018] 异或序列
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...
- BZOJ5301: [Cqoi2018]异或序列(莫队)
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 400 Solved: 291[Submit][Status ...
- P4462 [CQOI2018]异或序列
题目描述 已知一个长度为n的整数数列 a1,a2,...,ana_1,a_2,...,a_na1,a2,...,an ,给定查询参数l.r,问在 al,al+1,...,ara_l,a_{l+1 ...
- [bzoj5301][Cqoi2018]异或序列_莫队
异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...
随机推荐
- windows安装ZIP压缩版的Weblogic Server
以前要装Weblogic Server的时候都是装的安装版,最近发现ZIP版本的Weblogic Server是一个只包含Weblogic Server的版本,于是就想着弄一下它. 这里用到的Webl ...
- centos6.5 (linux) 禁用模块 IPV6模块的方法
装完centos后,默认开启了一些模块.可是有些模块并非我们必须的.比方眼下尚未在中国普及的IPV6 怎样关闭IPV6呢 以下介绍的方法,也能够在关闭其它模块的时候使用 第一步: 查找模块名称 使用命 ...
- mysql innodb插入意向锁
innodb中有插入意向锁.专门针对insert,假设插入前,该间隙已经由gap锁,那么Insert会申请插入意向锁. 那么这个插入意向锁的作用是什么? 1.为了唤起等待.由于该间隙已经有锁,插入时必 ...
- cmake使用演示样例与整理总结
本文代码托管于github cmake_demo cmake中一些提前定义变量 PROJECT_SOURCE_DIR project的根文件夹 PROJECT_BINARY_DIR 执行cmake命 ...
- 原始的解释器模式(Interpreter Pattern)
解释器模式的定义(现实项目中非常少遇到,因此直接理论先...) 解释器模式是一种依照规定语法进行解析的方案,在如今项目中使用较少,其定义为:给定一门语言,定义它的方法的一种表示,并定义一个解释器,该解 ...
- android findVIewById()在线生成工具
今天突然发现一个好工具,能够依据你输入的XML布局文件,自己主动生成findViewById的代码.还支持android annotation的注解方式.真是太棒了.由于我正是使用androidann ...
- 4 Ionic导航和核心组件--旅游应用
简介:在本节课中,我们将会通过一个虚构的旅游景点来构建一款功能完善的应用.本应用的核心特性是管理用户的应用内导航.本节课的主要目的,是展现构建一个完整的应用的过程. 无论是什么移动应用,最重要的功能之 ...
- 菜鸟Sublime日记
一.进行系统安装:www.sublimetext.com/3 选择相应的操作系统,你会发现安装速度惊人的快. 二.安装完成以后,先安装两个基本的插件package control ...
- 嵌入式开发之davinci--- DVRRDK, EZSDK和DVSDK这三者有什么区别
下载的时候选择信息要避免security类型的产品,这个是要审查的. DVRRDK是专门针对DVR的开发包是非公开的,针对安防的客户定制的,效率要高. EZSDK是开放的版本架构上使用openmax可 ...
- 2015/12/29 eclipse 设置要点 空间 项目 类 eclipse汉化
开始使用eclipse,双击eclipse.exe文件,启动eclipse.程序会显示一个工作空间的对话框,工作空间用来存放你的项目文件,你可以使用程序默认的,点击确定即可,你也可以重新选择一个文件夹 ...