* Results

*Conclusion*
- little effect of rear rotor on Cp_1
- Cp1 is independent of TI
** TI effect on single-rotor, front,
| cp | ct | TI | TSR |
|    |    | 1  |     |
|    |    | 15 |     |
** Dual rotor X=4D, TI 15% -- CFD-RANS
# TI 15%, RANS results
# TSR1 TSR2/TSR1 TSR2      Cp_1      Ct_1     Cp_2    Ct_2
  5.0   0.730    3.65   0.396   0.824  -0.024  0.289
  5.0   0.600    3.00   0.397   0.829   0.010  0.284  
  5.0   0.500    2.50   0.395   0.826   0.005   0.265

TSR1 TSR2/TSR1    TSR2    Cp_1    Ct_1    Cp_2    Ct_2
5    0.733    3.665    0.394    0.82    -0.044    0.229
5    0.644    3.22    0.393    0.82    -0.02    0.218
5    0.55    2.75    0.394    0.819    -0.005    0.21
5    0.5    2.5    0.395    0.82    0.002    0.184
5    0.45    2.25    0.396    0.821    0.000    0.168
5    0.4    2    0.396    0.821    -0.004    0.153
5    0.35    1.75    0.395    0.821    -0.006    0.143
5    0.2    1    0.396    0.822    -0.004    0.09

** Dual X=4D same TSR -- BEM + Park model
 # ak, distance (norm by D)=   3.99999991E-02   4.00000000    
 # TSR1, C_T_tot, C_P_tot, omega2/omega1
   1.000000E+00   2.862664E-01   2.394140E-02   9.567473E-01
   1.250000E+00   3.237689E-01   4.581533E-02   9.503006E-01
   1.500000E+00   3.736952E-01   7.827624E-02   9.411572E-01
   1.750000E+00   4.390565E-01   1.231780E-01   9.281210E-01
   2.000000E+00   5.195406E-01   1.788598E-01   9.113323E-01
   2.250000E+00   6.136195E-01   2.441946E-01   8.893722E-01
   2.500000E+00   7.156332E-01   3.136399E-01   8.634881E-01
   2.750000E+00   8.213180E-01   3.814463E-01   8.335000E-01
   3.000000E+00   9.222423E-01   4.392351E-01   8.015752E-01
   3.250000E+00   1.001631E+00   4.755293E-01   7.784010E-01
   3.500000E+00   1.065189E+00   4.984458E-01   7.609080E-01
   3.750000E+00   1.116553E+00   5.122202E-01   7.491560E-01
   4.000000E+00   1.160889E+00   5.199742E-01   7.404510E-01
   4.250000E+00   1.196960E+00   5.233117E-01   7.338645E-01
   4.500000E+00   1.229946E+00   5.234426E-01   7.281728E-01
   4.750000E+00   1.261175E+00   5.211463E-01   7.232024E-01
   5.000000E+00   1.291180E+00   5.169932E-01   7.189118E-01
   5.250000E+00   1.313614E+00   5.118050E-01   7.153068E-01
   5.500000E+00   1.339595E+00   5.045193E-01   7.123726E-01
   5.750000E+00   1.359179E+00   4.970232E-01   7.101494E-01
   6.000000E+00   1.381723E+00   4.874390E-01   7.084185E-01
   6.250000E+00   1.399795E+00   4.772219E-01   7.073638E-01

** DONE Cp one Rear Rotor at Re 1e6 - R=0.6
*Flow Features:*
keywords:

largely stalled)
High Angle of Attack, naca0012, stall,
Goal: performance when naca0012 is stalled

C:\Users\kaiming\Documents\ZJU\naca0012_Dual_Rotor\OneRotor_Rear_1M\tsr4

| TSR | Cp      | Ct |  Re | U(m/s) | omega(rad/s) | turbulence models |
|   4 | -0.011  |    | 1e6 |    4.4 |        77.22 |   standard k-e    |
|   4 | 0.05    |    | 1e6 |    4.4 |        77.22 |   sst ko          |
| 4.5 | - 0.013 |    | 1e6 |    4.4 |        86.87 |                   |
OneRotor_Rear_1M/rear_st_tsr4_ke_7k.dat.gz
** Wake
*** TKE
refernces:
N Stergiannis CFD modelling approaches against single wind turbine wake measurements using RANS
*** velocity contour in the wake
fig.9 mycek
** wake width measurement in CFD?
iso-surface plot, set variable as: U_x

** Mean axial velocity from CFD  at a given X/D?
- wake is normal distribution, gaussian
? how to get the mean of normal distribution?

- arear averaged axial mean veolocity of wake (Mycek 2014)
  +  (rotor radius,R)

reference:
#+CAPTION:area-averaged velocity (disc diameter=1D) (fig.8b mycek 2014 dual rotor)
file:figures/post/disc_averaged_axial_velocity_mycek_2014.png

Area used in my case:
 circular, r=1.2R (radius of turbine)

How to define the edge of of wake in CFD post processing  at different X/D?
how to define the edge of wake?
U_x = 0.99U_\infty
how to define the "mean" U_x in the wake?
? is r=1R used by mycek right?

*** One Rotor Front, Eldad Blade TSR 5 TI = 1%
# One Rotor, front, eldad blade
# TSR 5, TI =1%, \theta_T = 2 deg
#X/D    X   half width,    Ux    U    Ux/U
1    0.46    0.288    0.332    0.6    0.553333333
2    0.92    0.299    0.326    0.6    0.543333333
3    1.38    0.305    0.337    0.6    0.561666667
4    1.84    0.311    0.354    0.6    0.59
5    2.3    0.318    0.374    0.6    0.623333333
6    2.76    0.326    0.394    0.6    0.656666667
7    3.22    0.332    0.409    0.6    0.681666667
8    3.68    0.341    0.437    0.6    0.728333333
9    4.14    0.35    0.457    0.6    0.761666667
10    4.59    0.352    0.464    0.6    0.773333333
*** How to the area average velocity of wake at a given X/D?

1. cacluation wake width (b) at a given X/D
create a iso-surface plot with U_o,
2. get area average in CFDpost
  + create an expression in CFD post
~areaAve(Velocity in Stn Frame w)@areaAverage~
3. change X=2D...
*** *Turbulence kinetic energy*
3e-5, 1e-2
Number of contours, 51

Velocity
0.02-0.6
Number of contours, 31

** 3D streamline
what does 3D streamline means

** k correction
calibration

| TI (%) |      k | RMS Error |
|     15 | 0.0190 |    0.0190 |
|    1   |    0.0075 |     0.0371 |

*** Bayesian Calibration
- based on exprimental data: overall power

(Rathmann 2017)
variables: hub-height wind speed, wind direction
math function: probability density function
reommmended k value: 0.06 offshore and 0.09 onshore

- Rathmann, Ole Steen, et al. "Validation of the Revised WAsP Park Model." WindEurope 2017. 2017.
-  Rathmann O., Estimation of the Wake Expansion Coefficient from Eddy Diffusivity Theory. Research note, DTU Wind Energy. (2017).
-  M.C. Kennedy, A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(3), 425-464. (2001).
- Murcia, J.P. et al., Uncertainty quantification in wind farm flow models. PhD thesis, DTU Wind
Energy (2017).
- Murcia, J.P. et al., Wake Model Calibration Based On SCADA Data Considering Uncertainty In The
Inflow Conditions. Private communication (2017).
***  k vs TI

k= 0.4 TI [fn:goccmen2016wind]
k=0.04 when TI=10%
k=0.4 TI_h
- TI_h : hub height TI
k=0.4TI = 0.038 at the Sexbierum wind fams [fn:pena2016application]
[fn:pena2016application] Peña, Alfredo, Pierre‐Elouan Réthoré, and M. Paul van der Laan. "On the application of the Jensen wake model using a turbulence‐dependent wake decay coefficient: the Sexbierum case." Wind Energy 19.4 (2016): 763-776.
[fn:goccmen2016wind] Göçmen, Tuhfe, et al. "Wind turbine wake models developed at the technical university of Denmark: A review." Renewable and Sustainable Energy Reviews 60 (2016): 752-769.

*** Pyakurel's method
- based on CFD data: centre line axial mean velocity
- Eq (10) in Pyakurel 2017
- *observed* axial velocity, U_s = *centre line* velocity from CFD RANS (this value is used as experimental data)
- Predicted axial velocity, U_c = Jensen model in which Ct is also from CFD RANS
Root mean square error = (U_s - U_c )_rms
 # limit
centre line veolocity is lower than the area averaged velocity, thus low centre line velocity as baseline, k is not accurate

** Jump value of moment time history of dual rotor

Data of Ch5 --Dual rotor的更多相关文章

  1. Feedback on Ch5 paper based on CFD-RANS

    It is encouraging that you took the initiative to write this journal manuscript, but it needs a lot ...

  2. viva correction statements

    * List of amendments| No. | Location     | Amendments                                                ...

  3. ARM与x86之3--蝶变ARM

    http://blog.sina.com.cn/s/blog_6472c4cc0100lqr8.html 蝶变ARM 1929年开始的经济大萧条,改变了世界格局.前苏联的风景独好,使得相当多的人选择了 ...

  4. UDF简记

    摘要: 1.开发UDF 2.开发UDAF 3.开发UDTF 4.部署与测试 5.一个简单的实例 内容:1.开发UDF 函数类需要继承org.apache.hadoop.hive.ql.UDF 实现ev ...

  5. Oracle no TOP, how to get top from order

    On ROWNUM and Limiting Results Our technologist explains how ROWNUM works and how to make it work fo ...

  6. On ROWNUM and Limiting Results

    This issue's Ask Tom column is a little different from the typical column. I receive many questions ...

  7. 快速搭建springmvc+spring data jpa工程

    一.前言 这里简单讲述一下如何快速使用springmvc和spring data jpa搭建后台开发工程,并提供了一个简单的demo作为参考. 二.创建maven工程 http://www.cnblo ...

  8. Mesh Data Structure in OpenCascade

    Mesh Data Structure in OpenCascade eryar@163.com 摘要Abstract:本文对网格数据结构作简要介绍,并结合使用OpenCascade中的数据结构,将网 ...

  9. 三维等值面提取算法(Dual Contouring)

    上一篇介绍了Marching Cubes算法,Marching Cubes算法是三维重建算法中的经典算法,算法主要思想是检测与等值面相交的体素单元并计算交点的坐标,然后对不同的相交情况利用查找表在体素 ...

随机推荐

  1. 支持宕机自动恢复触发一次性或周期性任务执行的组件包首次介绍-easyTask

    easyTask介绍 一个方便触发一次性或周期性任务执行的工具包,支持海量,高并发,高可用,宕机自动恢复任务 使用场景 需要精确到秒的某一时刻触发任务执行.比如订单交易完成24小时后如果客户未评价,则 ...

  2. 5位ID生成方案

    最近在某微信技术群,有人问到如何生成5位唯一数字+字母字符串的算法,要保证生成的字符串唯一,且字符串内部也要唯一. 怎么样,这个需求是不是很简单,也有点特殊呢?简单是指需求简单,特殊是指,字符串长度要 ...

  3. golang——关于for循环的学习

    1.for循环的用法 (1)常规用法 func main() { slice := []int{1, 2, 3, 4, 5, 6} //方式1 for i := 0; i < len(slice ...

  4. CAD中的相对坐标和绝对坐标

    绝对坐标就是你作图的整个界限的原点,也就是CAD系统默认的原点坐标. 相对坐标就是相对于当前的点的坐标. 这两种坐标都有,可以根据习惯和需要自己看使用哪种. 一.绝对坐标 ①笛卡尔坐标(X,Y,Z) ...

  5. [Usaco2006 Jan] Dollar Dayz 奶牛商店

    Description 约翰到奶牛商场里买工具.商场里有K(1≤K≤100).种工具,价格分别为1,2,-,K美元.约翰手里有N(1≤N≤1000)美元,必须花完.那他有多少种购买的组合呢? Inpu ...

  6. 洛谷 P2048 [NOI2010]超级钢琴 || Fantasy

    https://www.luogu.org/problemnew/show/P2048 http://www.lydsy.com/JudgeOnline/problem.php?id=2006 首先计 ...

  7. 暴力/进制转换 Codeforces Round #308 (Div. 2) C. Vanya and Scales

    题目传送门 /* 题意:问是否能用质量为w^0,w^1,...,w^100的砝码各1个称出重量m,砝码放左边或在右边 暴力/进制转换:假设可以称出,用w进制表示,每一位是0,1,w-1.w-1表示砝码 ...

  8. 【先定一个小目标】Ubuntu 16.04 搭建 zookeeper

    ZooKeeper 是 Apache 的一个顶级项目,为分布式应用提供高效.高可用的分布式协调服务,提供了诸如数据发布/订阅.负载均衡.命名服务.分布式协调/通知和分布式锁等分布式基础服务.由于 Zo ...

  9. 二进制流BinaryFormatter存储读取数据的细节测试

    二进制流的使用很方便,为了更好的理解应用它,我创建简单对象开始测试它的增加特性和减少特性. [Serializable] class Data----------开始时候的存储对象 { public ...

  10. visual assist x 注释配置

    /******************************************************************** created: $DATE$ created: $DAY$ ...