* Results

*Conclusion*
- little effect of rear rotor on Cp_1
- Cp1 is independent of TI
** TI effect on single-rotor, front,
| cp | ct | TI | TSR |
|    |    | 1  |     |
|    |    | 15 |     |
** Dual rotor X=4D, TI 15% -- CFD-RANS
# TI 15%, RANS results
# TSR1 TSR2/TSR1 TSR2      Cp_1      Ct_1     Cp_2    Ct_2
  5.0   0.730    3.65   0.396   0.824  -0.024  0.289
  5.0   0.600    3.00   0.397   0.829   0.010  0.284  
  5.0   0.500    2.50   0.395   0.826   0.005   0.265

TSR1 TSR2/TSR1    TSR2    Cp_1    Ct_1    Cp_2    Ct_2
5    0.733    3.665    0.394    0.82    -0.044    0.229
5    0.644    3.22    0.393    0.82    -0.02    0.218
5    0.55    2.75    0.394    0.819    -0.005    0.21
5    0.5    2.5    0.395    0.82    0.002    0.184
5    0.45    2.25    0.396    0.821    0.000    0.168
5    0.4    2    0.396    0.821    -0.004    0.153
5    0.35    1.75    0.395    0.821    -0.006    0.143
5    0.2    1    0.396    0.822    -0.004    0.09

** Dual X=4D same TSR -- BEM + Park model
 # ak, distance (norm by D)=   3.99999991E-02   4.00000000    
 # TSR1, C_T_tot, C_P_tot, omega2/omega1
   1.000000E+00   2.862664E-01   2.394140E-02   9.567473E-01
   1.250000E+00   3.237689E-01   4.581533E-02   9.503006E-01
   1.500000E+00   3.736952E-01   7.827624E-02   9.411572E-01
   1.750000E+00   4.390565E-01   1.231780E-01   9.281210E-01
   2.000000E+00   5.195406E-01   1.788598E-01   9.113323E-01
   2.250000E+00   6.136195E-01   2.441946E-01   8.893722E-01
   2.500000E+00   7.156332E-01   3.136399E-01   8.634881E-01
   2.750000E+00   8.213180E-01   3.814463E-01   8.335000E-01
   3.000000E+00   9.222423E-01   4.392351E-01   8.015752E-01
   3.250000E+00   1.001631E+00   4.755293E-01   7.784010E-01
   3.500000E+00   1.065189E+00   4.984458E-01   7.609080E-01
   3.750000E+00   1.116553E+00   5.122202E-01   7.491560E-01
   4.000000E+00   1.160889E+00   5.199742E-01   7.404510E-01
   4.250000E+00   1.196960E+00   5.233117E-01   7.338645E-01
   4.500000E+00   1.229946E+00   5.234426E-01   7.281728E-01
   4.750000E+00   1.261175E+00   5.211463E-01   7.232024E-01
   5.000000E+00   1.291180E+00   5.169932E-01   7.189118E-01
   5.250000E+00   1.313614E+00   5.118050E-01   7.153068E-01
   5.500000E+00   1.339595E+00   5.045193E-01   7.123726E-01
   5.750000E+00   1.359179E+00   4.970232E-01   7.101494E-01
   6.000000E+00   1.381723E+00   4.874390E-01   7.084185E-01
   6.250000E+00   1.399795E+00   4.772219E-01   7.073638E-01

** DONE Cp one Rear Rotor at Re 1e6 - R=0.6
*Flow Features:*
keywords:

largely stalled)
High Angle of Attack, naca0012, stall,
Goal: performance when naca0012 is stalled

C:\Users\kaiming\Documents\ZJU\naca0012_Dual_Rotor\OneRotor_Rear_1M\tsr4

| TSR | Cp      | Ct |  Re | U(m/s) | omega(rad/s) | turbulence models |
|   4 | -0.011  |    | 1e6 |    4.4 |        77.22 |   standard k-e    |
|   4 | 0.05    |    | 1e6 |    4.4 |        77.22 |   sst ko          |
| 4.5 | - 0.013 |    | 1e6 |    4.4 |        86.87 |                   |
OneRotor_Rear_1M/rear_st_tsr4_ke_7k.dat.gz
** Wake
*** TKE
refernces:
N Stergiannis CFD modelling approaches against single wind turbine wake measurements using RANS
*** velocity contour in the wake
fig.9 mycek
** wake width measurement in CFD?
iso-surface plot, set variable as: U_x

** Mean axial velocity from CFD  at a given X/D?
- wake is normal distribution, gaussian
? how to get the mean of normal distribution?

- arear averaged axial mean veolocity of wake (Mycek 2014)
  +  (rotor radius,R)

reference:
#+CAPTION:area-averaged velocity (disc diameter=1D) (fig.8b mycek 2014 dual rotor)
file:figures/post/disc_averaged_axial_velocity_mycek_2014.png

Area used in my case:
 circular, r=1.2R (radius of turbine)

How to define the edge of of wake in CFD post processing  at different X/D?
how to define the edge of wake?
U_x = 0.99U_\infty
how to define the "mean" U_x in the wake?
? is r=1R used by mycek right?

*** One Rotor Front, Eldad Blade TSR 5 TI = 1%
# One Rotor, front, eldad blade
# TSR 5, TI =1%, \theta_T = 2 deg
#X/D    X   half width,    Ux    U    Ux/U
1    0.46    0.288    0.332    0.6    0.553333333
2    0.92    0.299    0.326    0.6    0.543333333
3    1.38    0.305    0.337    0.6    0.561666667
4    1.84    0.311    0.354    0.6    0.59
5    2.3    0.318    0.374    0.6    0.623333333
6    2.76    0.326    0.394    0.6    0.656666667
7    3.22    0.332    0.409    0.6    0.681666667
8    3.68    0.341    0.437    0.6    0.728333333
9    4.14    0.35    0.457    0.6    0.761666667
10    4.59    0.352    0.464    0.6    0.773333333
*** How to the area average velocity of wake at a given X/D?

1. cacluation wake width (b) at a given X/D
create a iso-surface plot with U_o,
2. get area average in CFDpost
  + create an expression in CFD post
~areaAve(Velocity in Stn Frame w)@areaAverage~
3. change X=2D...
*** *Turbulence kinetic energy*
3e-5, 1e-2
Number of contours, 51

Velocity
0.02-0.6
Number of contours, 31

** 3D streamline
what does 3D streamline means

** k correction
calibration

| TI (%) |      k | RMS Error |
|     15 | 0.0190 |    0.0190 |
|    1   |    0.0075 |     0.0371 |

*** Bayesian Calibration
- based on exprimental data: overall power

(Rathmann 2017)
variables: hub-height wind speed, wind direction
math function: probability density function
reommmended k value: 0.06 offshore and 0.09 onshore

- Rathmann, Ole Steen, et al. "Validation of the Revised WAsP Park Model." WindEurope 2017. 2017.
-  Rathmann O., Estimation of the Wake Expansion Coefficient from Eddy Diffusivity Theory. Research note, DTU Wind Energy. (2017).
-  M.C. Kennedy, A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(3), 425-464. (2001).
- Murcia, J.P. et al., Uncertainty quantification in wind farm flow models. PhD thesis, DTU Wind
Energy (2017).
- Murcia, J.P. et al., Wake Model Calibration Based On SCADA Data Considering Uncertainty In The
Inflow Conditions. Private communication (2017).
***  k vs TI

k= 0.4 TI [fn:goccmen2016wind]
k=0.04 when TI=10%
k=0.4 TI_h
- TI_h : hub height TI
k=0.4TI = 0.038 at the Sexbierum wind fams [fn:pena2016application]
[fn:pena2016application] Peña, Alfredo, Pierre‐Elouan Réthoré, and M. Paul van der Laan. "On the application of the Jensen wake model using a turbulence‐dependent wake decay coefficient: the Sexbierum case." Wind Energy 19.4 (2016): 763-776.
[fn:goccmen2016wind] Göçmen, Tuhfe, et al. "Wind turbine wake models developed at the technical university of Denmark: A review." Renewable and Sustainable Energy Reviews 60 (2016): 752-769.

*** Pyakurel's method
- based on CFD data: centre line axial mean velocity
- Eq (10) in Pyakurel 2017
- *observed* axial velocity, U_s = *centre line* velocity from CFD RANS (this value is used as experimental data)
- Predicted axial velocity, U_c = Jensen model in which Ct is also from CFD RANS
Root mean square error = (U_s - U_c )_rms
 # limit
centre line veolocity is lower than the area averaged velocity, thus low centre line velocity as baseline, k is not accurate

** Jump value of moment time history of dual rotor

Data of Ch5 --Dual rotor的更多相关文章

  1. Feedback on Ch5 paper based on CFD-RANS

    It is encouraging that you took the initiative to write this journal manuscript, but it needs a lot ...

  2. viva correction statements

    * List of amendments| No. | Location     | Amendments                                                ...

  3. ARM与x86之3--蝶变ARM

    http://blog.sina.com.cn/s/blog_6472c4cc0100lqr8.html 蝶变ARM 1929年开始的经济大萧条,改变了世界格局.前苏联的风景独好,使得相当多的人选择了 ...

  4. UDF简记

    摘要: 1.开发UDF 2.开发UDAF 3.开发UDTF 4.部署与测试 5.一个简单的实例 内容:1.开发UDF 函数类需要继承org.apache.hadoop.hive.ql.UDF 实现ev ...

  5. Oracle no TOP, how to get top from order

    On ROWNUM and Limiting Results Our technologist explains how ROWNUM works and how to make it work fo ...

  6. On ROWNUM and Limiting Results

    This issue's Ask Tom column is a little different from the typical column. I receive many questions ...

  7. 快速搭建springmvc+spring data jpa工程

    一.前言 这里简单讲述一下如何快速使用springmvc和spring data jpa搭建后台开发工程,并提供了一个简单的demo作为参考. 二.创建maven工程 http://www.cnblo ...

  8. Mesh Data Structure in OpenCascade

    Mesh Data Structure in OpenCascade eryar@163.com 摘要Abstract:本文对网格数据结构作简要介绍,并结合使用OpenCascade中的数据结构,将网 ...

  9. 三维等值面提取算法(Dual Contouring)

    上一篇介绍了Marching Cubes算法,Marching Cubes算法是三维重建算法中的经典算法,算法主要思想是检测与等值面相交的体素单元并计算交点的坐标,然后对不同的相交情况利用查找表在体素 ...

随机推荐

  1. linux php5.6 提示 could not find driver

    1.进入在PHP源码包中进入ext/pdo_mysql # wget http://pecl.php.net/get/PDO_MYSQL-1.0.2.tgz 2.然后是解压缩. # tar -zxvf ...

  2. 题解报告:hdu 1124 Factorial(求N!尾数有多少个0。)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1124 Problem Description The most important part of a ...

  3. HDFS执行getDatanodeReport输出信息

    HDFS执行getDatanodeReport输出信息: Name: (192.168.101.100) Hostname: bigsrv Decommission Status : Normal C ...

  4. PHP 简单答题系统

    --sample 1: <!DOCTYPE html><html><head> <title>登录</title> <style ty ...

  5. outlook 通讯录分类--2017年1月16日--对联系人分类管理

    outlook功能多,复杂,导致打开界面就晕,通讯录分类 问:在Outlook 中,随着联系人数量的增多,亲朋好友.同事.客户的信息混杂在一起,每次发邮件都要用很长时间才能从联系人列表中找到需要的人. ...

  6. Abp Framework中文文档上线

    感谢 ABP框架中国小组 给我们带来的ABP中文翻译,Web+为方便广大学习爱好者随时查阅,现推出了Gitbook风格的在线阅读文档:http://www.webplus.org.cn/documen ...

  7. 关于jquery获取单选框value属性值为on的问题

    当取单选框的value值的时候,前提是要有value这个属性,如果没有value属性那么取出来的就会为on 取value值的常见三种方式为 $("input[name='XXX']:chec ...

  8. jquery js 分页

    <html xmlns="http://www.w3.org/1999/xhtml"><head>    <title>jQuery.pager ...

  9. vue全局loading组件

    本组件作用在页面加载完成前进行loader提示,提升用户体验,只需要在app.vue中引用一次,整个项目中路由切换时就可以自动进行提示(vuex版): 1. 添加vuex值和方法: import Vu ...

  10. 总结几点sql语句优化

    一.表设计阶段: 1.主键的使用    a.业务日志表.安全审计表采用自增长:    b.自定义编号用于业务流程类表,根据一定的编号规则:    c.int型主键 用于基础数据表: 2.逻辑删除字段的 ...