* Results

*Conclusion*
- little effect of rear rotor on Cp_1
- Cp1 is independent of TI
** TI effect on single-rotor, front,
| cp | ct | TI | TSR |
|    |    | 1  |     |
|    |    | 15 |     |
** Dual rotor X=4D, TI 15% -- CFD-RANS
# TI 15%, RANS results
# TSR1 TSR2/TSR1 TSR2      Cp_1      Ct_1     Cp_2    Ct_2
  5.0   0.730    3.65   0.396   0.824  -0.024  0.289
  5.0   0.600    3.00   0.397   0.829   0.010  0.284  
  5.0   0.500    2.50   0.395   0.826   0.005   0.265

TSR1 TSR2/TSR1    TSR2    Cp_1    Ct_1    Cp_2    Ct_2
5    0.733    3.665    0.394    0.82    -0.044    0.229
5    0.644    3.22    0.393    0.82    -0.02    0.218
5    0.55    2.75    0.394    0.819    -0.005    0.21
5    0.5    2.5    0.395    0.82    0.002    0.184
5    0.45    2.25    0.396    0.821    0.000    0.168
5    0.4    2    0.396    0.821    -0.004    0.153
5    0.35    1.75    0.395    0.821    -0.006    0.143
5    0.2    1    0.396    0.822    -0.004    0.09

** Dual X=4D same TSR -- BEM + Park model
 # ak, distance (norm by D)=   3.99999991E-02   4.00000000    
 # TSR1, C_T_tot, C_P_tot, omega2/omega1
   1.000000E+00   2.862664E-01   2.394140E-02   9.567473E-01
   1.250000E+00   3.237689E-01   4.581533E-02   9.503006E-01
   1.500000E+00   3.736952E-01   7.827624E-02   9.411572E-01
   1.750000E+00   4.390565E-01   1.231780E-01   9.281210E-01
   2.000000E+00   5.195406E-01   1.788598E-01   9.113323E-01
   2.250000E+00   6.136195E-01   2.441946E-01   8.893722E-01
   2.500000E+00   7.156332E-01   3.136399E-01   8.634881E-01
   2.750000E+00   8.213180E-01   3.814463E-01   8.335000E-01
   3.000000E+00   9.222423E-01   4.392351E-01   8.015752E-01
   3.250000E+00   1.001631E+00   4.755293E-01   7.784010E-01
   3.500000E+00   1.065189E+00   4.984458E-01   7.609080E-01
   3.750000E+00   1.116553E+00   5.122202E-01   7.491560E-01
   4.000000E+00   1.160889E+00   5.199742E-01   7.404510E-01
   4.250000E+00   1.196960E+00   5.233117E-01   7.338645E-01
   4.500000E+00   1.229946E+00   5.234426E-01   7.281728E-01
   4.750000E+00   1.261175E+00   5.211463E-01   7.232024E-01
   5.000000E+00   1.291180E+00   5.169932E-01   7.189118E-01
   5.250000E+00   1.313614E+00   5.118050E-01   7.153068E-01
   5.500000E+00   1.339595E+00   5.045193E-01   7.123726E-01
   5.750000E+00   1.359179E+00   4.970232E-01   7.101494E-01
   6.000000E+00   1.381723E+00   4.874390E-01   7.084185E-01
   6.250000E+00   1.399795E+00   4.772219E-01   7.073638E-01

** DONE Cp one Rear Rotor at Re 1e6 - R=0.6
*Flow Features:*
keywords:

largely stalled)
High Angle of Attack, naca0012, stall,
Goal: performance when naca0012 is stalled

C:\Users\kaiming\Documents\ZJU\naca0012_Dual_Rotor\OneRotor_Rear_1M\tsr4

| TSR | Cp      | Ct |  Re | U(m/s) | omega(rad/s) | turbulence models |
|   4 | -0.011  |    | 1e6 |    4.4 |        77.22 |   standard k-e    |
|   4 | 0.05    |    | 1e6 |    4.4 |        77.22 |   sst ko          |
| 4.5 | - 0.013 |    | 1e6 |    4.4 |        86.87 |                   |
OneRotor_Rear_1M/rear_st_tsr4_ke_7k.dat.gz
** Wake
*** TKE
refernces:
N Stergiannis CFD modelling approaches against single wind turbine wake measurements using RANS
*** velocity contour in the wake
fig.9 mycek
** wake width measurement in CFD?
iso-surface plot, set variable as: U_x

** Mean axial velocity from CFD  at a given X/D?
- wake is normal distribution, gaussian
? how to get the mean of normal distribution?

- arear averaged axial mean veolocity of wake (Mycek 2014)
  +  (rotor radius,R)

reference:
#+CAPTION:area-averaged velocity (disc diameter=1D) (fig.8b mycek 2014 dual rotor)
file:figures/post/disc_averaged_axial_velocity_mycek_2014.png

Area used in my case:
 circular, r=1.2R (radius of turbine)

How to define the edge of of wake in CFD post processing  at different X/D?
how to define the edge of wake?
U_x = 0.99U_\infty
how to define the "mean" U_x in the wake?
? is r=1R used by mycek right?

*** One Rotor Front, Eldad Blade TSR 5 TI = 1%
# One Rotor, front, eldad blade
# TSR 5, TI =1%, \theta_T = 2 deg
#X/D    X   half width,    Ux    U    Ux/U
1    0.46    0.288    0.332    0.6    0.553333333
2    0.92    0.299    0.326    0.6    0.543333333
3    1.38    0.305    0.337    0.6    0.561666667
4    1.84    0.311    0.354    0.6    0.59
5    2.3    0.318    0.374    0.6    0.623333333
6    2.76    0.326    0.394    0.6    0.656666667
7    3.22    0.332    0.409    0.6    0.681666667
8    3.68    0.341    0.437    0.6    0.728333333
9    4.14    0.35    0.457    0.6    0.761666667
10    4.59    0.352    0.464    0.6    0.773333333
*** How to the area average velocity of wake at a given X/D?

1. cacluation wake width (b) at a given X/D
create a iso-surface plot with U_o,
2. get area average in CFDpost
  + create an expression in CFD post
~areaAve(Velocity in Stn Frame w)@areaAverage~
3. change X=2D...
*** *Turbulence kinetic energy*
3e-5, 1e-2
Number of contours, 51

Velocity
0.02-0.6
Number of contours, 31

** 3D streamline
what does 3D streamline means

** k correction
calibration

| TI (%) |      k | RMS Error |
|     15 | 0.0190 |    0.0190 |
|    1   |    0.0075 |     0.0371 |

*** Bayesian Calibration
- based on exprimental data: overall power

(Rathmann 2017)
variables: hub-height wind speed, wind direction
math function: probability density function
reommmended k value: 0.06 offshore and 0.09 onshore

- Rathmann, Ole Steen, et al. "Validation of the Revised WAsP Park Model." WindEurope 2017. 2017.
-  Rathmann O., Estimation of the Wake Expansion Coefficient from Eddy Diffusivity Theory. Research note, DTU Wind Energy. (2017).
-  M.C. Kennedy, A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(3), 425-464. (2001).
- Murcia, J.P. et al., Uncertainty quantification in wind farm flow models. PhD thesis, DTU Wind
Energy (2017).
- Murcia, J.P. et al., Wake Model Calibration Based On SCADA Data Considering Uncertainty In The
Inflow Conditions. Private communication (2017).
***  k vs TI

k= 0.4 TI [fn:goccmen2016wind]
k=0.04 when TI=10%
k=0.4 TI_h
- TI_h : hub height TI
k=0.4TI = 0.038 at the Sexbierum wind fams [fn:pena2016application]
[fn:pena2016application] Peña, Alfredo, Pierre‐Elouan Réthoré, and M. Paul van der Laan. "On the application of the Jensen wake model using a turbulence‐dependent wake decay coefficient: the Sexbierum case." Wind Energy 19.4 (2016): 763-776.
[fn:goccmen2016wind] Göçmen, Tuhfe, et al. "Wind turbine wake models developed at the technical university of Denmark: A review." Renewable and Sustainable Energy Reviews 60 (2016): 752-769.

*** Pyakurel's method
- based on CFD data: centre line axial mean velocity
- Eq (10) in Pyakurel 2017
- *observed* axial velocity, U_s = *centre line* velocity from CFD RANS (this value is used as experimental data)
- Predicted axial velocity, U_c = Jensen model in which Ct is also from CFD RANS
Root mean square error = (U_s - U_c )_rms
 # limit
centre line veolocity is lower than the area averaged velocity, thus low centre line velocity as baseline, k is not accurate

** Jump value of moment time history of dual rotor

Data of Ch5 --Dual rotor的更多相关文章

  1. Feedback on Ch5 paper based on CFD-RANS

    It is encouraging that you took the initiative to write this journal manuscript, but it needs a lot ...

  2. viva correction statements

    * List of amendments| No. | Location     | Amendments                                                ...

  3. ARM与x86之3--蝶变ARM

    http://blog.sina.com.cn/s/blog_6472c4cc0100lqr8.html 蝶变ARM 1929年开始的经济大萧条,改变了世界格局.前苏联的风景独好,使得相当多的人选择了 ...

  4. UDF简记

    摘要: 1.开发UDF 2.开发UDAF 3.开发UDTF 4.部署与测试 5.一个简单的实例 内容:1.开发UDF 函数类需要继承org.apache.hadoop.hive.ql.UDF 实现ev ...

  5. Oracle no TOP, how to get top from order

    On ROWNUM and Limiting Results Our technologist explains how ROWNUM works and how to make it work fo ...

  6. On ROWNUM and Limiting Results

    This issue's Ask Tom column is a little different from the typical column. I receive many questions ...

  7. 快速搭建springmvc+spring data jpa工程

    一.前言 这里简单讲述一下如何快速使用springmvc和spring data jpa搭建后台开发工程,并提供了一个简单的demo作为参考. 二.创建maven工程 http://www.cnblo ...

  8. Mesh Data Structure in OpenCascade

    Mesh Data Structure in OpenCascade eryar@163.com 摘要Abstract:本文对网格数据结构作简要介绍,并结合使用OpenCascade中的数据结构,将网 ...

  9. 三维等值面提取算法(Dual Contouring)

    上一篇介绍了Marching Cubes算法,Marching Cubes算法是三维重建算法中的经典算法,算法主要思想是检测与等值面相交的体素单元并计算交点的坐标,然后对不同的相交情况利用查找表在体素 ...

随机推荐

  1. js 调试方法两种

    JS的错误捕获一般有下面两种方式: 1. 异常捕获常用方法是 try/catch/ throw /finally 2. 全局捕获window.onerror 1. try/catch/throw/fi ...

  2. 【OpenJ_Bailian - 4001】 Catch That Cow(bfs+优先队列)

    Catch That Cow Descriptions: Farmer John has been informed of the location of a fugitive cow and wan ...

  3. php 打包下载

    <?php class zipfile { var $datasec = array (); var $ctrl_dir = array (); var $eof_ctrl_dir = &quo ...

  4. 安卓Activity全屏显示以及不显示title

    1.让Activity全局显示,使系统的导航栏变为透明: (1)可以在Activity代码中添加window属性: if(VERSION.SDK_INT >= VERSION_CODES.KIT ...

  5. 用js的eval函数模拟Web API中的onclick事件

    在检查组内小伙伴提交的tabToggler插件的js代码时,发现了onclick的如下用法: el.onclick = function(){ //按钮样式切换 for(var i=0;i<ob ...

  6. (2)《Head First HTML与CSS》学习笔记---img与基于标准的HTML5

    1.浏览器处理图像的过程: 1.服务器获取文件,显示出文本结构,以及预留默认的大小给<img>(如果该<img>有width-1值和height-1值,则根据这个值提前设好页面 ...

  7. GridView 中绑定DropDownList ,下拉框默认选中Label的值

    在GridView中,我们 有时候要绑定值. 前台绑定的代码可以这样 <asp:TemplateField HeaderText="当前状态" ItemStyle-Horiz ...

  8. 短视频SDK简单易用——来自RDSDK.COM

    锐动天地为开发者提供短视频编辑.视频直播.特效.录屏.编解码.视频转换,等多种解决方案,涵盖PC.iOS.Android多平台.以市场为导向,不断打磨并创新技术,在稳定性,兼容性,硬件设备效率优化上千 ...

  9. redis 其他特性

    1.消息订阅与发布 subscribe my1 订阅频道 psubscribe my1* 批量订阅频道,订阅以my1开头的所有频道 publish my1 hello 在指定频道中发布消息,返回值为接 ...

  10. 前端入门22-讲讲模块化 包括webstrom建立简单ES6

    https://www.cnblogs.com/dasusu/p/10105433.html