The Luckiest number

Time Limit: 1000ms
Memory Limit: 32768KB

This problem will be judged on HDU. Original ID: 2462
64-bit integer IO format: %I64d      Java class name: Main

Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

 

Input

The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

The last test case is followed by a line containing a zero.

 

Output

For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

 

Sample Input

8
11
16
0

Sample Output

Case 1: 1
Case 2: 2
Case 3: 0

Source

 
解题:

首先,由题意可以得出,(10^x - 1)/ 9 * 8 = L * p(p是一个未知数,但必定是整数)。

然后对上式进行移项处理,得:(10^x - 1) = 9 * L * p / 8。

设m = 9 * L / gcd(L, 8),则有(10^x - 1) = m * p'。p’是必然存在的一个整数。

然后问题就转化成为了 10^x = 1(mod m),观察此式,显然,m和10必定互质。

于是根据欧拉定理,10^(Euler(m)) = 1(mod m) 。由于题目要求最小的解,解必然是Euler(m)的因子。

转自 OK_again

 #include <bits/stdc++.h>
using namespace std;
using LL = long long;
const int maxn = ;
LL mul(LL a, LL b, LL mod) {
LL ret = ;
while(b) {
if(b&) ret = (ret + a) % mod;
a = (a<<)%mod;
b >>= ;
}
return ret;
}
LL quickPow(LL base,LL index,LL mod){
LL ret = ;
while(index){
if(index&) ret = mul(ret,base,mod);
index >>= ;
base = mul(base,base,mod);
}
return ret;
}
bool np[maxn] = {true,true};
int p[maxn],tot;
void init(){
for(int i = ; i < maxn; ++i){
if(!np[i]) p[tot++] = i;
for(int j = ; j < tot && p[j]*i < maxn; ++j){
np[p[j]*i] = true;
if(i%p[j] == ) break;
}
}
}
LL Euler(LL n){
LL ret = n;
for(int i = ; (LL)p[i]*p[i] <= n; ++i){
if(n%p[i] == ){
ret = ret/p[i]*(p[i] - );
while(n%p[i] == ) n /= p[i];
}
}
if(n > ) ret = ret/n*(n-);
return ret;
}
vector<int>F;
void Fn(LL n){
F.clear();
for(int i = ; i < tot && n > ; ++i){
while(n%p[i] == ){
n /= p[i];
F.push_back(p[i]);
}
}
if(n > ) F.push_back(n);
}
int main(){
init();
LL L;
int cs = ;
while(scanf("%I64d",&L),L){
LL m = *L/__gcd(L,8LL);
if(__gcd(m,10LL) != ){
printf("Case %d: 0\n",cs++);
continue;
}
LL x = Euler(m);
Fn(x);
for(auto it:F)
if(quickPow(,x/it,m) == ) x /= it;
printf("Case %d: %I64d\n",cs++,x);
}
return ;
}

HDU 2462 The Luckiest number的更多相关文章

  1. poj 3696 The Luckiest Number

    The Luckiest Number 题目大意:给你一个int范围内的正整数n,求这样的最小的x,使得:连续的x个8可以被n整除. 注释:如果无解输出0.poj多组数据,第i组数据前面加上Case ...

  2. POJ3696 The Luckiest number

    题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...

  3. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  4. hdu 6216 A Cubic number and A Cubic Number【数学题】

    hdu 6216 A Cubic number and A Cubic Number[数学] 题意:判断一个素数是否是两个立方数之差,就是验差分.. 题解:只有相邻两立方数之差才可能,,因为x^3-y ...

  5. POJ_3696 The Luckiest number 【欧拉定理+同余式+对取模的理解】

    一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his ...

  6. poj_3696_The Luckiest number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  7. hdu 2462(欧拉定理+高精度快速幂模)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  9. HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)

    HDU 1394 Minimum Inversion Number(线段树求最小逆序数对) ACM 题目地址:HDU 1394 Minimum Inversion Number 题意:  给一个序列由 ...

随机推荐

  1. 水题 Codeforces Round #304 (Div. 2) A. Soldier and Bananas

    题目传送门 /* 水题:ans = (1+2+3+...+n) * k - n,开long long */ #include <cstdio> #include <algorithm ...

  2. Harris角点检测原理及实现

    一.原理 二.实现 close all; clear all; I=imread('test.tif'); [posX,posY]=harris(I); figure;imshow(I); hold ...

  3. JAVA常用知识总结(一)

    try catch finally 的详细用法: public static int testBasic(){ int i = 1; try{ i++; System.out.println(&quo ...

  4. 使用 Realm 和 Swift 创建 ToDo 应用

    原文出处: HOSSAM GHAREEB   译文出处:Prayer’s blog(@EclipsePrayer) 智能手机的快速发展的同时,涌现出了很多对开发者友好的开发工具,这些工具不仅使得开发变 ...

  5. CSS div 塌陷问题

    嵌套塌陷 上下塌陷 overflow:hidden;

  6. RabbitMQ八:交换机类型Exchange Types--Topic介绍

    前言 上一章节,我们说了两个类型,本章我们说一下其三:Topic Exchange Topic Exchange  Topic Exchange – 将路由键和某模式进行匹配.此时队列需要绑定要一个模 ...

  7. Lumia 刷机(强刷)Message send failed解决办法

    强刷可以救砖,不需要验证地区code,可以跨刷其它国家/地区的固件,但不是所有机型都可以这样,Lumia 620是支持跨刷的. 看本文你首先要知道使用Nokia Care Suite强刷的步骤,参考从 ...

  8. 通用maper无法获取实体类com.qmtt.model.PhWxUser对应的表名问题

    spring boot在采用了热加载后,可能会出现“无法获取实体类com.qmtt.model.PhWxUser对应的表名!”的异常, 解决办法 在resources新建一个文件夹META-INF,新 ...

  9. Java基础50题test3—水仙花数

    水仙花数 题目:打印出所有的"水仙花数",所谓"水仙花数"是指一个三位数,其各位数字立方和等于该数本身.例 如:153 是一个"水仙花数", ...

  10. iOS 应用程序内部国际化,不跟随系统语言

    前言:网络上关于iOS国际化的文章很多,但基本上都是基于跟随系统语言的国际化,笔者就不赘述了-0 – 今天要讲的是不跟随系统的切换语言版本方案,即程序内部的切换语言版本方案. 一.总则: 应用内部语言 ...