The Luckiest number

Time Limit: 1000ms
Memory Limit: 32768KB

This problem will be judged on HDU. Original ID: 2462
64-bit integer IO format: %I64d      Java class name: Main

Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own lucky number L. Now he wants to construct his luckiest number which is the minimum among all positive integers that are a multiple of L and consist of only digit '8'.

 

Input

The input consists of multiple test cases. Each test case contains exactly one line containing L(1 ≤ L ≤ 2,000,000,000).

The last test case is followed by a line containing a zero.

 

Output

For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the length of Bob's luckiest number. If Bob can't construct his luckiest number, print a zero.

 

Sample Input

8
11
16
0

Sample Output

Case 1: 1
Case 2: 2
Case 3: 0

Source

 
解题:

首先,由题意可以得出,(10^x - 1)/ 9 * 8 = L * p(p是一个未知数,但必定是整数)。

然后对上式进行移项处理,得:(10^x - 1) = 9 * L * p / 8。

设m = 9 * L / gcd(L, 8),则有(10^x - 1) = m * p'。p’是必然存在的一个整数。

然后问题就转化成为了 10^x = 1(mod m),观察此式,显然,m和10必定互质。

于是根据欧拉定理,10^(Euler(m)) = 1(mod m) 。由于题目要求最小的解,解必然是Euler(m)的因子。

转自 OK_again

 #include <bits/stdc++.h>
using namespace std;
using LL = long long;
const int maxn = ;
LL mul(LL a, LL b, LL mod) {
LL ret = ;
while(b) {
if(b&) ret = (ret + a) % mod;
a = (a<<)%mod;
b >>= ;
}
return ret;
}
LL quickPow(LL base,LL index,LL mod){
LL ret = ;
while(index){
if(index&) ret = mul(ret,base,mod);
index >>= ;
base = mul(base,base,mod);
}
return ret;
}
bool np[maxn] = {true,true};
int p[maxn],tot;
void init(){
for(int i = ; i < maxn; ++i){
if(!np[i]) p[tot++] = i;
for(int j = ; j < tot && p[j]*i < maxn; ++j){
np[p[j]*i] = true;
if(i%p[j] == ) break;
}
}
}
LL Euler(LL n){
LL ret = n;
for(int i = ; (LL)p[i]*p[i] <= n; ++i){
if(n%p[i] == ){
ret = ret/p[i]*(p[i] - );
while(n%p[i] == ) n /= p[i];
}
}
if(n > ) ret = ret/n*(n-);
return ret;
}
vector<int>F;
void Fn(LL n){
F.clear();
for(int i = ; i < tot && n > ; ++i){
while(n%p[i] == ){
n /= p[i];
F.push_back(p[i]);
}
}
if(n > ) F.push_back(n);
}
int main(){
init();
LL L;
int cs = ;
while(scanf("%I64d",&L),L){
LL m = *L/__gcd(L,8LL);
if(__gcd(m,10LL) != ){
printf("Case %d: 0\n",cs++);
continue;
}
LL x = Euler(m);
Fn(x);
for(auto it:F)
if(quickPow(,x/it,m) == ) x /= it;
printf("Case %d: %I64d\n",cs++,x);
}
return ;
}

HDU 2462 The Luckiest number的更多相关文章

  1. poj 3696 The Luckiest Number

    The Luckiest Number 题目大意:给你一个int范围内的正整数n,求这样的最小的x,使得:连续的x个8可以被n整除. 注释:如果无解输出0.poj多组数据,第i组数据前面加上Case ...

  2. POJ3696 The Luckiest number

    题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...

  3. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  4. hdu 6216 A Cubic number and A Cubic Number【数学题】

    hdu 6216 A Cubic number and A Cubic Number[数学] 题意:判断一个素数是否是两个立方数之差,就是验差分.. 题解:只有相邻两立方数之差才可能,,因为x^3-y ...

  5. POJ_3696 The Luckiest number 【欧拉定理+同余式+对取模的理解】

    一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his ...

  6. poj_3696_The Luckiest number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  7. hdu 2462(欧拉定理+高精度快速幂模)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  8. POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  9. HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)

    HDU 1394 Minimum Inversion Number(线段树求最小逆序数对) ACM 题目地址:HDU 1394 Minimum Inversion Number 题意:  给一个序列由 ...

随机推荐

  1. SpringCloud开发学习总结(七)—— 声明式服务调用Feign(二)

    参数绑定 在上一章的示例中,我们使用Spring Cloud Feign实现的是一个不带参数的REST服务绑定.然而现实系统中的各种业务接口要比它复杂得多,我们有时会在HTTP的各个位置传入各种不同类 ...

  2. 513 Find Bottom Left Tree Value 找树左下角的值

    给定一个二叉树,在树的最后一行找到最左边的值. 详见:https://leetcode.com/problems/find-bottom-left-tree-value/description/ C+ ...

  3. hash 【模板】

    hash 功能: hash一般用于快速判断两个或多个字符串是否匹配. 实现 :    想一想,如果比较两个数子的话是很方便的很快,那么我们把整个字符串看成一个大数.  它是base进制的len位数.但 ...

  4. idea安装mybatis插件

    简介 mybatis_plus主要的作用是自动导航,如下图 点击箭头会跳转到对应的dao接口中,同样,dao接口中也有这样的箭头,点击之后会跳转到对应的sql映射语句处. 还有一个功能就是检查mapp ...

  5. C/S WinForm自动升级

    这二天刚好完成一个C/S 自动升级的功能 代码分享一下 /// <summary>    /// 版本检测    /// </summary>    public class ...

  6. Java GC机制简要总结(Java垃圾回收的基本工作原理)

    第一次编辑 2019-05-07 01:09:39 垃圾回收的对象 程序中的不可用对象(不存活的对象,没有任何引用),或者无用的变量信息等,在程序中长期存在会逐渐占用较多的内存空间,导致没有足够的空间 ...

  7. poj2184 Cow Exhibition

    思路: dp+滚动数组. 类似01背包. 实现: #include <iostream> #include <cstdio> #include <algorithm> ...

  8. css3 blur模糊解决ie6-ie9兼容

    css3 blur模糊是css3的新特性,但是不兼容ie6-ie9,以下代码可以解决此问题: filter: progid:DXImageTransform.Microsoft.Blur(Pixel ...

  9. wkWebView 的一些问题

    导语 WKWebView 是苹果在 WWDC 2014 上推出的新一代 webView 组件,用以替代 UIKit 中笨重难用.内存泄漏的 UIWebView.WKWebView 拥有60fps滚动刷 ...

  10. Linux OpenGL 实践篇-11-shadow

    OpenGL 阴影 在三维场景中,为了使场景看起来更加的真实,通常需要为其添加阴影,OpenGL可以使用很多种技术实现阴影,其中有一种非常经典的实现是使用一种叫阴影贴图的实现,在本节中我们将使用阴影贴 ...