watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGFubWVuZ3dlbg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdGFubWVuZ3dlbg==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

function [x,minf] = minLM(f,x0,beta,u,v,var,eps)
format long;
if nargin == 6
eps = 1.0e-6;
end
S = transpose(f)*f;
k = length(f);
n = length(x0);
x0 = transpose(x0);
A = jacobian(f,var);
tol = 1; while tol>eps
Fx = zeros(k,1);
for i=1:k
Fx(i,1) = Funval(f(i),var,x0);
end
Sx = Funval(S,var,x0);
Ax = Funval(A,var,x0);
gSx = transpose(Ax)*Fx;
Q = transpose(Ax)*Ax; while 1
dx = -(Q+u*eye(size(Q)))\gSx; x1 = x0 + dx;
for i=1:k
Fx1(i,1) = Funval(f(i),var,x1);
end
Sx1 = Funval(S,var,x1);
tol = norm(dx);
if tol<=eps
break;
end if Sx1 >= Sx+beta*transpose(gSx)*dx
u = v*u;
continue;
else
u = u/v;
break;
end
end
x0 = x1;
end
x = x0;
minf = Funval(S,var,x);
format short;

Levenberg–Marquardt algorithm的更多相关文章

  1. matlab实现高斯牛顿法、Levenberg–Marquardt方法

    高斯牛顿法: function [ x_ans ] = GaussNewton( xi, yi, ri) % input : x = the x vector of 3 points % y = th ...

  2. [SLAM] 01 "Simultaneous Localization and Mapping" basic knowledge

    发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发信站: 水木社区 (Thu Jun 16 19:18:24 2016), 站内 ...

  3. Kintinuous 相关论文 Volume Fusion 详解

    近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...

  4. Tikhonov regularization 吉洪诺夫 正则化

    这个知识点很重要,但是,我不懂. 第一个问题:为什么要做正则化? In mathematics, statistics, and computer science, particularly in t ...

  5. Machine learning | 机器学习中的范数正则化

    目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...

  6. [SLAM] 01. "Simultaneous Localization and Mapping"

    本篇带你认识SLAM,形成客观的认识和体系 一.通过行业招聘初步了解SLAM 发信人: leecty (Terry), 信区: ParttimeJobPost标 题: 创业公司招SLAM 算法工程师发 ...

  7. <<Numerical Analysis>>笔记

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

  8. 从零开始一起学习SLAM | 理解图优化,一步步带你看懂g2o代码

    首发于公众号:计算机视觉life 旗下知识星球「从零开始学习SLAM」 这可能是最清晰讲解g2o代码框架的文章 理解图优化,一步步带你看懂g2o框架 小白:师兄师兄,最近我在看SLAM的优化算法,有种 ...

  9. <Numerical Analysis>(by Timothy Sauer) Notes

    2ed,  by Timothy Sauer DEFINITION 1.3A solution is correct within p decimal places if the error is l ...

随机推荐

  1. 通俗理解LDA主题模型(boss)

    0 前言 看完前面几篇简单的文章后,思路还是不清晰了,但是稍微理解了LDA,下面@Hcy开始详细进入boss篇.其中文章可以分为下述5个步骤: 一个函数:gamma函数 四个分布:二项分布.多项分布. ...

  2. SqlBulkCopy实现大批量数据导入

    //自增列重新生成:SqlBulkCopy bc = new SqlBulkCopy(conn) //自增列保留原值:SqlBulkCopy bc = new SqlBulkCopy(conn,Sql ...

  3. 判断点击第几个按钮JS代码的三种方法

    方法一:使用下标实现<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> < ...

  4. HDU6189 Law of Commutation (数论)

    题意:输入n和a 定义m等于2的n次方 求1-m有多少数使得 a^b = b^a (mod m) 题解:先打表找规律 发现a为奇数的答案只有b = a这一种 (不知道为什么也不想知道为什么 当a为偶数 ...

  5. vue 使用vue-i18n做全局中英文切换

    1.vue-i18n安装 npm install vue-i18n --save-dev 2.在main.js文件中引入 import VueI18n from 'vue-i18n'; Vue.use ...

  6. iview“官方“实现的右键菜单

    博客开篇,没想到第一篇博文竟然是前端的,虽略显尴尬,但正能量溢出,你我可能遇到同样问题,在这里分享下个人方案,希望对你有用. 官方目前不提供右键菜单,这里借助Dropdown(下拉菜单)来实现,故为“ ...

  7. NOIP 2018 真・退役记

    目录 NOIp 2018 真・退役记 7.01 7.05 \(summary\) 7.12 7.18 7.26 - 7.27 8.2 8.3 8.3 8.7 8.9 8.20 8.24 8.27 8. ...

  8. linux more-显示文件内容,每次显示一屏

    博主推荐:获取更多 linux文件内容查看命令 收藏:linux命令大全 more命令是一个基于vi编辑器文本过滤器,它以全屏幕的方式按页显示文本文件的内容,支持vi中的关键字定位操作.more名单中 ...

  9. Volume 6. Mathematical Concepts and Methods

    138 - Street Numbers #include <stdio.h> //(2n+1)^2 - 8m^2 = 1,佩尔函数,或者打表 int main() { ; , xi = ...

  10. 搭建Nginx服务

    Nginx 是一个高性能的 http 和反向代理服务器,也是一个 IMAP/POP3/SMPT 服务器. Nginx 是由 logor Sysoev 为俄罗斯访问第二的 Ranbler.ru 站点开发 ...