转:https://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html

机器视觉工程应用主要可划分为硬件和软件两大部分。

硬件:工程应用的第一步就是硬件选型。硬件选型很关键,因为它是你后面工作的基础。主要是光源、工业相机和镜头选择。

软件:目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI等,开源库有OpenCV.其中NI的labview+vision模块。

机器视觉工程应用的基本开发思路是:

一、图像采集,二、图像分割,三、形态学处理,四、特征提取,五、输出结果。

一、图像采集:

Halcon通过imageacquisition interfaces对各种图像采集卡及各种工业相机进行支持。

1、打开设备,获得该设备的句柄。

open_framegrabber('DahengCAM', 1, 1, 0, 0, 0, 0, 'interlaced', 8, 'gray', -1, 'false','HV-13xx', '1', 1, -1, AcqHandle) //连接相机,并设置相关参数

2、调用采集算子,获取图像。

grab_image (Image, AcqHandle) //(同步采集)完后处理图像,然后再采集图像。采集图像的速率受处理速度影响。
grab_image_async (Image, AcqHandle,MaxDelay) //(异步采集),一幅画面采集完后相机马上采集下一幅画面,不受处理速度影响。其中第三个参数为:MaxDelay,表示异步采集时可以允许的最大延时,本次采集命令距上次采集命令的时间不能超出MaxDelay,超出即重新采集。

例子

* Select a suitable image acquisition interface nameAcqName
open_framegrabber(AcqName,1,1,0,0,0,0,'default',-1,'default',-1.0,\
'default','default','default',-1,-1,AcqHandle)
grab_image(Image1,AcqHandle)//进行同步采集
* Start next grab
grab_image_start(AcqHandle,-1.0)//命令相机进行异步图像采集开始
* Process Image1 ...
* Finish asynchronous grab + start next grab
grab_image_async(Image2,AcqHandle,-1.0)//读取异步采集的图像
* Process Image2 ...
close_framegrabber(AcqHandle)  

二、图像分割:

图像分割的定义: 
所谓图像分割是指将图像中具有特殊含义的不同区域分割开来,这些区域是互相不交叉的,每个区域都满足特定区域的一致性。

1、基于阈值的图像分割

a) threshold —采用全局阈值分割图像。

格式:    threshold(Image : Region : MinGray, MaxGray : )

自动全局阈值分割的方法:

(1)计算灰度直方图 
(2)寻找出现频率最多的灰度值(最大值) 
(3)在threshold中使用与最大值有一定距离的值作为阈值

代码:

gray_histo(Regions, Image,AbsoluteHisto, RelativeHisto) //计算出图像区域内的绝对和相对灰度值直方图。
PeakGray := sort_index(AbsoluteHisto)[255] //求出出现频率最多的灰度值
threshold(Image,Region,0,PeakGray-25)

b) bin_threshold — 使用一个自动确定的阈值分割图像。

格式:    bin_threshold(Image : Region : : )

c)dyn_threshold —使用一个局部阈值分割图像。

格式:    dyn_threshold(OrigImage, ThresholdImage : RegionDynThresh : Offset, LightDark : )

例子:

mean_image(Image,Mean,,)
dyn_threshold(Image,Mean, RegionDynThresh,,'dark')

d)var_threshold —阈值图像局部均值和标准差的分析。

格式:    var_threshold(Image : Region : MaskWidth, MaskHeight, StdDevScale, AbsThreshold, LightDar

2、基于边缘的图像分割:寻找区域之间的边界

watersheds —从图像中提取分水岭和盆地。

格式:    watersheds(Image : Basins, Watersheds : : )

watersheds_threshold —使用阈值从图像中提取分水岭和盆地。

格式:    watersheds_threshold(Image : Basins : Threshold : )

3、基于区域的图像分割:直接创建区域

三、形态学处理

形态学处理以集合运算为基础。

腐蚀、膨胀、开操作、闭操作是所有形态学图像处理的基础。

开操作(先腐蚀再膨胀)使对象的轮廓变得光滑,断开狭窄的间断和消除细的突出物。

闭操作(先膨胀再腐蚀)消弥狭窄的间断和长细的鸿沟,消除小的孔洞,填补轮廓线的断裂。

形体学基础算子:

erosion1 
dilation1 
opening 
closing

常用的形态学相关算子 
connection 
select_shape 
opening_circle 
closing_circle 
opening_rectangle1 
closing_rectangle1 
complement 
difference 
intersection 
union1 
shaps_trans 
fill_up

形态学高级算子: 
boundary 
skeleton

四、特征提取:

1、区域特征:

area 
moments

smallest_rectangle1

smallest_circle

convexity:区域面积与凸包面积的比例

contlength:区域边界的长度

compactness

2、灰度特征

estimate_noise

select_gray

五、输出结果:

(1)获取满足条件的区域

(2)区域分类,比如OCR

(3)测量

(4)质量检测

Halcon学习笔记1的更多相关文章

  1. Halcon学习笔记之支持向量机(二)

    例程:classify_halogen_bulbs.hdev 在Halcon中模式匹配最成熟最常用的方式该署支持向量机了,在本例程中展示了使用支持向量机对卤素灯的质量检测方法.通过这个案例,相信大家可 ...

  2. Halcon学习笔记之支持向量机(一)

    例程:class_overlap_svm.hdev 说明:这个例程展示了如何用一个支持向量机来给一幅二维的图像进行分类.使用二维数据的原因是因为它可以很容易地联想成为区域和图像.本例程中使用了三个互相 ...

  3. halcon学习笔记——机器视觉工程应用的开发思路【转】

    转自:http://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...

  4. Halcon学习笔记——条形码的定位与识别

    一维码的原理与结构 条码基本原理是利用条纹和间隔或宽窄条纹(间隔)构成二进制的”0“和”1“,反映的是某种信息. 一维条码数据结构,分四个区域.组成分别为静区.起始/终止符.校验符.数据符. 一维条码 ...

  5. Halcon学习笔记——机器视觉应用工程开发思路及相机标定

    机器视觉应用工程开发思路 机器视觉应用工程主要可划分为两大部分,硬件部分和软件部分. 1.硬件部分,硬件的选型至关重要,决定了后续工作是否可以正常开展,其中关键硬件部分包括:光源,相机以及镜头. 2. ...

  6. halcon学习笔记——(11)Image,region,xld初步

    一 读取的3种方式: 读取单张的图片: read_image( image,'filename') //image 是输出对象,后面是输入文件的路径和名称 读取多图: 1,申明一个数组,分别保存路径 ...

  7. Halcon学习笔记之缺陷检测(二)

    例程:detect_indent_fft.hdev 说明:这个程序展示了如何利用快速傅里叶变换(FFT)对塑料制品的表面进行目标(缺陷)的检测,大致分为三步: 首先,我们用高斯滤波器构造一个合适的滤波 ...

  8. Halcon学习笔记之缺陷检测(一)

    例程:surface_scratch.hdev 说明:这个程序利用局部阈值和形态学处理提取表面划痕 代码中绿色部分为个人理解和注释,其余为例程中原有代码 *surface_scratch.hdev:e ...

  9. HALCON学习笔记

    2019-2-2: 硬件选型--->镜头光源相机选型第一讲.avi: 高斯公式:1/u+1/v=1/f  u:物距  v:像距 f:焦距 线放大倍率:像高/物高  或者 像距/物距 镜头需要掌握 ...

随机推荐

  1. jQuery测试结果

    您的回答: 1.下面哪种说法是正确的? 您的回答:jQuery 是 JavaScript 库 2.jQuery 使用 CSS 选择器来选取元素? 您的回答:正确 3.jQuery 的简写是? 您的回答 ...

  2. day4装饰器-迭代器&&生成器

    一.装饰器 定义:本质是函数,(装饰其他函数)就是为其它函数添加附加功能 原则:1.不能修改被装饰的函数的源代码 2.不能修改被装饰的函数的调用方式 实现装饰器知识储备: 1.函数及“变量” 2.高阶 ...

  3. 【旧文章搬运】PspCidTable攻与防

    原文发表于百度空间,2009-03-29========================================================================== PspCi ...

  4. View Controller Programming Guide for iOS---(二)---View Controller Basics

    View Controller Basics Apps running on iOS–based devices have a limited amount of screen space for d ...

  5. mysite-exampleservice和mysite-vsg

    可能找到了这两个nova安装的地方,下午分析 搜素site_name test 这条线 cord-compute-maas-playbook这条线 这个可以作为验证

  6. Android Service完全解析,关于服务你所需知道的一切(上) (转载)

    转自:http://blog.csdn.net/guolin_blog/article/details/11952435 转载请注明出处:http://blog.csdn.net/guolin_blo ...

  7. loj#2542. 「PKUWC2018」随机游走(树形dp+Min-Max容斥)

    传送门 首先,关于\(Min-Max\)容斥 设\(S\)为一个点的集合,每个点的权值为走到这个点的期望时间,则\(Max(S)\)即为走遍这个集合所有点的期望时间,\(Min(S)\)即为第一次走到 ...

  8. class JsonItemExporter(BaseItemExporter):

    class JsonItemExporter(BaseItemExporter):这个类的实现和几年前的实现有了点小变化,主要就是是否添加换行

  9. JavaSE基础知识结构

  10. Linux源码编译处理

    1. 解决依赖问题 查询需要的依赖软件,提前安装好若使用命令行安装,一般使用默认路径:使用源码安装,则自定义安装路径,后续可能需要进行路径配置PS:可能需要在Makefile等配置文件中添加相关库文件 ...