传送门

完全看不出这思路是怎么来的……

首先对于两个亲戚,他们监视范围的边界是他们连线的中垂线。那么对于一个亲戚来说它能监视的范围就是所有的中垂线形成的半平面交

然后如果某两个亲戚的监视范围有公共边,那么就在这两个亲戚之间连一条边,如果某个亲戚的监视范围和矩阵边界有公共边,那么就把这个亲戚和终点连边。然后以一开始监视的亲戚为起点,跑一遍最短路即可

//minamoto
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
#define go(u) for(register int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[1<<21],*p1=buf,*p2=buf;
using namespace std;
int read(){
int res,f=1;char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=10005;
int S,T,n,times,sx,sy,bx,by,no[N],m;
struct Graph{
struct eg{int v,nx;}e[N<<1];int head[N],tot;
inline void clr(){tot=0;memset(head,0,sizeof(head));}
inline void add(int u,int v){e[++tot]={v,head[u]},head[u]=tot;}
int dis[N],q[N];bool vis[N];
int spfa(){
fp(i,1,n+1)dis[i]=inf,vis[i]=0;
int h=0,t=1;dis[S]=0,q[h]=S;
while(h!=t){
int u=q[h++];vis[u]=0;if(h==N)h-=N;
go(u)if(dis[v]>dis[u]+1){
dis[v]=dis[u]+1;
if(!vis[v]){
q[t++]=v,vis[v]=1;
if(t==N)t-=N;
}
}
}return dis[T];
}
}G;
struct node{double x,y;}p[N];
struct line{
node a,b;int id;double sl;
inline line(){}
inline line(node a,node b,int id):a(a),b(b),id(id){sl=atan2(b.y-a.y,b.x-a.x);}
}q[N],a[N],l[N];
inline node operator +(node a,node b){return {a.x+b.x,a.y+b.y};}
inline node operator -(node a,node b){return {a.x-b.x,a.y-b.y};}
inline double operator *(node a,node b){return a.x*b.y-a.y*b.x;}
inline bool operator <(line a,line b){return a.sl==b.sl?(a.b-a.a)*(b.a-a.a)<=0:a.sl<b.sl;}
node inter(line a,line b){
double k1,k2,t;
k1=(b.b-a.a)*(a.b-a.a);
k2=(a.b-a.a)*(b.a-a.a);
t=k2/(k1+k2);
return {b.a.x+t*(b.b.x-b.a.x),b.a.y+t*(b.b.y-b.a.y)};
}
inline bool jd(line a,line b,line c){node p=inter(a,b);return (p-c.a)*(c.b-c.a)>0;}
void hpi(int st){
int tot=0;sort(l+1,l+1+m);
fp(i,1,m)if(l[i].sl!=a[tot].sl)a[++tot]=l[i];
int h=1,t=0;q[++t]=a[1],q[++t]=a[2];
fp(i,3,tot){
while(h<t&&jd(q[t-1],q[t],a[i]))--t;
while(h<t&&jd(q[h+1],q[h],a[i]))++h;
q[++t]=a[i];
}
while(h<t&&jd(q[t-1],q[t],q[h]))--t;
while(h<t&&jd(q[h+1],q[h],q[t]))++h;
fp(i,h,t)G.add(st,q[i].id);
}
void clr(){G.clr(),memset(no,0,sizeof(no));}
double dis(node a,node b){return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);}
node rotate(node a){return {-a.y,a.x};}
node getmid(node a,node b){return {(a.x+b.x)/2,(a.y+b.y)/2};}
void init(int st){
l[1]=line({0,0},{sx,0},n+1),l[2]=line({sx,0},{sx,sy},n+1);
l[3]=line({sx,sy},{0,sy},n+1),l[4]=line({0,sy},{0,0},n+1);
m=4;
fp(i,1,n)if(i!=st&&!no[i]){
node mid=getmid(p[i],p[st]);
node v=rotate(p[i]-p[st]);
l[++m]=line(mid,mid+v,i);
}
}
void solve(){
clr(),n=read(),sx=read(),sy=read(),bx=read(),by=read();
node res={bx,by};
if(!n)return (void)(puts("0"));
T=n+1;int pos=0;double len=1e15;
fp(i,1,n){
p[i].x=read(),p[i].y=read();
if(p[i].x>sx||p[i].y>sy)no[i]=1;
double now=dis(p[i],res);
if(now<len)len=now,pos=i;
}S=pos;
fp(i,1,n)if(!no[i])init(i),hpi(i);
printf("%d\n",G.spfa());
}
int main(){
// freopen("testdata.in","r",stdin);
times=read();
while(times--)solve();
return 0;
}

P3297 [SDOI2013]逃考的更多相关文章

  1. 洛谷 P3297 [SDOI2013]逃考 解题报告

    P3297 [SDOI2013]逃考 题意 给一个平面矩形,里面有一些有标号点,有一个是人物点,人物点会被最近的其他点控制,人物点要走出矩形,求人物点最少被几个点控制过. 保证一开始只被一个点控制,没 ...

  2. luogu P3297 [SDOI2013]逃考

    传送门 gugugu 首先每个人管理的区域是一个多边形,并且整个矩形是被这样的多边形填满的.现在的问题是求一条经过多边形最少的路径到达边界,这个可以最短路. 现在的问题是建图,显然我们应该给相邻的多边 ...

  3. BZOJ3199 SDOI2013 逃考 半平面交、最短路

    传送门 如果我们对于每一个点能找到与其相邻的点(即不经过其他点监视范围能够直接到达其监视范围的点)和是否直接到达边界,就可以直接BFS求最短路求出答案. 所以当前最重要的问题是如何找到对于每一个点相邻 ...

  4. Luogu3297 SDOI2013逃考(半平面交+最短路)

    把每个人的监视范围看成点,相邻的两个监视范围连边,那么跑一遍最短路就可以了(事实上边权都为1可以直接bfs).显然存在最优路线没有某个时刻同时被多于两人监视,要到达另一个区域的话完全可以经过分界线而不 ...

  5. [JZOJ3297] 【SDOI2013】逃考

    题目 我发现我现在连题面都懒得复制粘贴了-- 题目大意 在一个矩形中有一堆点,这堆点按照以下规则将矩形瓜分成一堆块: 对于每个坐标,它属于离它最近的点的块. 一个人从某个坐标出发到矩形外面,求经过的最 ...

  6. 【JZOJ3297】【SDOI2013】逃考(escape)

    Mission 高考又来了,对于不认真读书的来讲真不是个好消息.为了小杨能在家里认真读书,他的亲戚决定驻扎在他的家里监督他学习,有爷爷奶奶.外公外婆.大舅.大嫂.阿姨-- 小杨实在是忍无可忍了,这种生 ...

  7. 2014秋C++第5周项目1參考-见识刚開始学习的人常见错误

    课程主页在http://blog.csdn.net/sxhelijian/article/details/39152703,实践要求见http://blog.csdn.net/sxhelijian/a ...

  8. C++常考面试题汇总

    c++面试题 一 用简洁的语言描述 c++ 在 c 语言的基础上开发的一种面向对象编程的语言: 应用广泛: 支持多种编程范式,面向对象编程,泛型编程,和过程化编程:广泛应用于系统开发,引擎开发:支持类 ...

  9. AWS的SysOps认证考试样题解析

    刚考过了AWS的developer认证,顺手做了一下SysOps的样题.以下是题目和答案. When working with Amazon RDS, by default AWS is respon ...

随机推荐

  1. C51 静态数码管 个人笔记

    显示器介绍 单片机系统中常用的显示器有: LED(Light Emitting Diode):发光二极管显示器 LCD(Liquid Crystal Display)液晶显示器 TFT 液晶显示器等. ...

  2. BNUOJ 26223 CosmoCraft

    CosmoCraft Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ID: ...

  3. xtu summer individual 6 B - Number Busters

    Number Busters Time Limit: 1000ms Memory Limit: 262144KB This problem will be judged on CodeForces. ...

  4. POJ 3469 网络流最小割

    将两个CPU分别视作源点和汇点 对于那些不在同一个CPU中的模块会产生的代价作为一条双向的容量弧 这里每个模块可以在任意一个CPU中运行,相当于寻找一个割,分割后,在S集合中的模块安装在第一个CPU中 ...

  5. UVA 140_Bandwidth

    题意: 定义一个结点的带宽是其距离所有相连结点的最远距离,一个图的带宽是图中所有结点带宽的最小值.给出一个图中各个结点的相邻情况,要求写出一个结点的排列,使得其所构成的图带宽最小. 分析: 枚举全排列 ...

  6. JSP点击计数器

    以下内容引用自http://wiki.jikexueyuan.com/project/jsp/hits-counter.html: 一个点击计数器能得知关于网站某个特定页面的访问量.假设人们第一次登陆 ...

  7. socker地址API

    大端字节序是指一个整数的高位字节存储在内存的低地址处,低位字节存储在内存的高地址处.小端字节序是指整数的高位字节存储在内存的高地址处,低位字节则存储在内存的低地址处. 现代pc大多采用小端字节序,故小 ...

  8. 学习javascript 非常好的博客

    这个大牛写的非常好!!推荐一下 http://www.cnblogs.com/xiaohuochai/tag/javascript%E6%80%BB%E7%BB%93/default.html?pag ...

  9. Ubuntu 16.04 LTS 搭建LAMP

    1. LAMP是一系列自由和开源软件的集合,包含了Linux.Web服务器(Apache).数据库服务器(MySQL)和PHP(脚本语言). Apache2 Web 服务器的安装 sudo apt i ...

  10. Apple Swift编程语言新手教程

    文件夹 1   简单介绍 2   Swift入门 3   简单值 4   控制流 5   函数与闭包 6   对象与类 7   枚举与结构 1   简单介绍 今天凌晨Apple刚刚公布了Swift编程 ...