NumPy--简介

 Numpy(Numerical Python的简称)是一个由多维数组对象和用于处理数组的例程集合组成的库。
 Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机器学习框架的基础库!

其部分功能如下:
        ①ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。
        ②用于对整组数据进行快速运算的标准数学函数(无需编写循环)。
        ③用于读写磁盘数据的工具以及用于操作内存映射文件的工具。
        ④线性代数、随机数生成以及傅里叶变换功能。
        ⑤用于集成由C、C++、Fortran等语言编写的代码的工具。

NumPy的安装

直接安装
        在cmd中进入到  python的安装目录下的scripts文件夹中,执行下面的命令:
pip install numpy

离线安装

1、打开网址https://pypi.org/project/numpy/,找到安装的python版本对应的numpy版本。

         2、将numpy下载到  python的安装目录下的scripts文件夹中;
        3、然后在cmd中执行以下命令:

pip install numpy-1.14.5-cp36-none-win_amd64.whl

ndarray多维数组

简介
        NumPy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器。
        ndarray是一个通用的同构数据容器,也就是说,其中的所有元素必须是相同类型的。
        每个数组都有一个shape(一个表示各维度大小的元组)和一个dtype(一个用于说明数组数据类型的对象)

date.shape
data.dtype

创建ndarray

        创建数组最简单的办法就是使用array函数。它接受一切序列的对象(包括其他的数组),然后产生一个新的含有传入数据的NumPy数组。
        嵌套序列(比如由一组等长列表组成的列表)将会被转换为一个多维数组。
函数 描述
array 将输入数据(列表、元组、数据或其他序列类型)转换为ndarray;默认直接复制输入数据;
asarray 将输入转换为ndarray,如果输入本身就是一个ndarray就不进行复制;
arange 类似内置range,但返回的是一个ndarray而不是列表;
    ones、ones_like

前者根据指定的形状和dtype创建一个全1数组,后者以另一个数组为参数,并创建一个全1数组;

   zeros、zeros_like 类似于ones和ones_like,产生的是全0数组;
  empty、empty_like 创建新数组,只分配内存空间但不填充任何值;
eye、identity 创建一个正方的N * N 单位矩阵(对角线为1,其他为0);

实现代

import numpy as np
data1 = [6,7.5,8,0,1] #创建列表
arr1 = np.array(data1) #转换为数组
print(arr1)
print(arr1.dtype) #数据类型保存在dtype对象中 data2 = [[1,2,3,4],[5,6,7,8]] #创建嵌套序列(由等长列表组成的列表)
arr2 = np.array(data2) #转换为多维数组
print(arr2)
print(arr1.dtype)
print(arr1.shape) print(np.zeros(10)) #创建指定长度(10)的全0数组
print(np.ones(2,4)) #创建指定长度的(2行4列二维)的全1数组
print(np.empty((2, 3, 2)))#创建指定长度的(2行3列2层的三维)的随机数数组

ndarray的数据类型

        dtype(数据类型)是一个特殊的对象,它含有ndarray将一块内存解释为特定数据类型所需的信息。
        dtype是NumPy如此强大和灵活的原因之一。多数情况下,它们直接映射到相应的机器表示,这使得“读写磁盘上的二进制数据流”以及“集成低级语言代码(如C、Fortran)”等工作变得更加简单。
        数值型dtype的命名方式相同:一个类型名(如float或int),后面跟一个用于表示各元素位长的数字。
        标准的双精度浮点值(即Python中的float对象)需要占用8字节(即64位)。因此,该类型在NumPy中就记作float64。
        用data.dtype()来显示数据类型


下图列示了NumPy所支持的全部数据类型:
类型 描述
bool 用一位存储的布尔类型(值为TRUE或FALSE)
inti 由所在平台决定其精度的整数(一般为int32或int64)
int8 整数,范围为  -128 至 127
int16 整数,范围为  -32 768 至 32 767
int32 整数,范围为  -231 至 231 - 1
int64 整数,范围为  -263 至 263 - 1
uint8 无符号整数,范围为 0 至 255
uint16 无符号整数,范围为 0 至 65 535
uint32 无符号整数,范围为 0 至232 - 1
uint64 无符号整数,范围为 0至 264 - 1
float16 半精度浮点数(16位):其中用1位表示正负号,5位表示指数,10位表示尾数
float32 单精度浮点数(32位):其中用1位表示正负号,8位表示指数,23位表示尾数
float64或float 双精度浮点数(64位):其中用1位表示正负号,11位表示指数,52位表示尾数
complex64 复数,分别用两个32位浮点数表示实部和虚部
complex128或complex 复数,分别用两个64位浮点数表示实部和虚部

Python基础 — NumPy的更多相关文章

  1. Python基础-numpy

    创建数组 numpy.array():括号内可以是列表.元祖.数组.生成器等 numpy.arange():类似range(),在给定间隔内返回均匀间隔的值 #numpy.linspace() 返回在 ...

  2. python基础--numpy.random

    # *_*coding:utf-8 *_* # athor:auto import numpy.random #rand(d0, d1, ..., dn)n维随机值 data0 = numpy.ran ...

  3. python基础--numpy.dot

    # *_*coding:utf-8 *_* # athor:auto import numpy dot = numpy.dot([0.100, 0.200],2.) print(dot) #[ 0.2 ...

  4. Python基础——numpy库的使用

    1.numpy库简介:    NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. 2.numpy库使用: 注:由于深度学习中存在大量的 ...

  5. python基础系列教程,数学基础系列教程,数据分析系列教程,神经网络系列教程,深度学习系列视频教程分享交流

    大家好,我是一个技术爱好者,目前对大数据人工智能很是痴迷,虽然学历只有高中,目前正在大踏步的向着人工智能狂奔,如果你也想学习,那就来吧 我的学习进度python基础(Numpy,pandas,matp ...

  6. [转]python与numpy基础

    来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb ...

  7. Python数据分析基础——Numpy tutorial

    参考link  https://docs.scipy.org/doc/numpy-dev/user/quickstart.html 基础 Numpy主要用于处理多维数组,数组中元素通常是数字,索引值为 ...

  8. Python小白的发展之路之Python基础(一)

    Python基础部分1: 1.Python简介 2.Python 2 or 3,两者的主要区别 3.Python解释器 4.安装Python 5.第一个Python程序 Hello World 6.P ...

  9. Python之路3【第一篇】Python基础

    本节内容 Python简介 Python安装 第一个Python程序 编程语言的分类 Python简介 1.Python的由来 python的创始人为吉多·范罗苏姆(Guido van Rossum) ...

随机推荐

  1. Fiddler简介与Web抓包,远程抓包(IE、360、谷歌、火狐)

    Fiddler简介以及web抓包 一.Fiddler简介 简单来说,Fiddler是一个http协议调试代理工具,它能够记录并检查所有你的电脑和互联网之间的http通讯.网上简介很多,我们不多说. 二 ...

  2. 关于Filter中ServletRequest和ServletResponse强转HttpServletRequest和HttpServletResponse

    ---转载自:https://www.cnblogs.com/mei0619/p/8341159.html request对象的生成方式不是ServletRequest request = new S ...

  3. [NOIP2008] 提高组 洛谷P1125 笨小猴

    题目描述 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设maxn是单词中出现次数最 ...

  4. .net如何统计在线人数

    原文发布时间为:2008-10-17 -- 来源于本人的百度文章 [由搬家工具导入] 统计在线用户的作用不言而喻,就是为了网站管理者可以知道当前用户的多少,然后根据用户数量来观察服务器或者程序的性能, ...

  5. hnuun 11544 小明的烦恼——找字符串(求环形字符串的最小最大字典序)

    http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11544&courseid=0 最小最大表示法: 求环 ...

  6. UEFI 下安装 ubuntu 及 win8 双系统 的一些事

    给电脑原装的win8系统装Ubuntu 出现了好多问题,重装多次,刷坏一块主板后,(都是泪啊...) 终于成功. 可能的问题 1:win8 系统下进入 blos 解决方案  1)关闭快速启动:管理员命 ...

  7. jupyter-notebook添加python虚拟环境的kernel

    参考: jupyter notebook添加kernel 在jupyter notebook上使用虚拟环境 本文是在anaconda的环境下配置的,装好anaconda后,jupyter-notebo ...

  8. X-pack-6.2.4破解

    1.前言: X-pack是elasticsearch的一个扩展包,将安全,警告,监视,图形和报告功能捆绑在一个易于安装的软件包中,虽然x-pack被设计为一个无缝的工作,但是你可以轻松的启用或者关闭一 ...

  9. 戴尔iDRAC服务器远程控制设置

    对于远程的服务器,我们不能经常性的去机房维护,所以远程控制对于服务器来说就显得至关重要.那么你是用什么方式对服务器进行远程控制呢?远程桌面?还是KVM切换器?NO,你OUT了!如果你用的是戴尔的服务器 ...

  10. Objective-C语言的 if ( self = [super init] )

    我们先假设如今自己创建了个类.我们起名叫MyObject,继承于NSObject. 继承知道吧,就是你这个子类(MyObject)假设什么都不写的话,和父类(NSObject)就是一模一样的. OC里 ...