将 numpy 数组存入文件,有多种文件类型可供选择,对应地就有不同的方法来读写。

下面我将介绍读写 numpy 的三类文件:

  • txt 或者 csv 文件
  • npy 或者 npz 文件
  • hdf5 文件

通过 numpy 读写 txt 或 csv 文件

import numpy as np

a = np.array(range(20)).reshape((4, 5))
print(a) # 后缀改为 .txt 一样
filename = 'data/a.csv'
# 写文件
np.savetxt(filename, a, fmt='%d', delimiter=',') # 读文件
b = np.loadtxt(filename, dtype=np.int32, delimiter=',')
print(b)

缺点:

  • 只能保存一维和二维 numpy 数组,当 numpy 数组 a 有多维时,需要将其 a.reshape((a.shape[0], -1)) 后才能用这种方式保存。
  • 不能追加保存,即每次 np.savetxt() 都会覆盖之前的内容。

通过 numpy 读写 npy 或 npz 文件

读写 npy 文件

import numpy as np

a = np.array(range(20)).reshape((2, 2, 5))
print(a) filename = 'data/a.npy'
# 写文件
np.save(filename, a) # 读文件
b = np.load(filename)
print(b)
print(b.shape)

优点:

  • npy 文件可以保存任意维度的 numpy 数组,不限于一维和二维;
  • npy 保存了 numpy 数组的结构,保存的时候是什么 shape 和 dtype,取出来时就是什么样的 shape 和 dtype。

缺点:

  • 只能保存一个 numpy 数组,每次保存会覆盖掉之前文件中存在的内容(如果有的话)。

读写 npz 文件

import numpy as np

a = np.array(range(20)).reshape((2, 2, 5))
b = np.array(range(20, 44)).reshape(2, 3 ,4)
print('a:\n', a)
print('b:\n', b) filename = 'data/a.npz'
# 写文件, 如果不指定key,那么默认key为'arr_0'、'arr_1',一直排下去。
np.savez(filename, a, b=b) # 读文件
c = np.load(filename)
print('keys of NpzFile c:\n', c.keys())
print("c['arr_0']:\n", c['arr_0'])
print("c['b']:\n", c['b'])

优点:

  • npy 文件可以保存任意维度的 numpy 数组,不限于一维和二维;
  • npy 保存了 numpy 数组的结构,保存的时候是什么 shape 和 dtype,取出来时就是什么样的 shape 和 dtype;
  • 可以同时保存多个 numpy 数组;
  • 可以指定保存 numpy 数组的 key,读取的时候很方便,不会混乱。

缺点:

  • 保存多个 numpy 数组时,只能同时保存,即 np.savez(filename, a, b=b)。每次保存会覆盖掉之前文件中存在的内容(如果有的话)。

通过 h5py 读写 hdf5 文件

优点:

  • 不限 numpy 数组维度,可以保持 numpy 数组结构和数据类型;
  • 适合 numpy 数组很大的情况,文件占用空间小;
  • 可以通过 key 来访问 dataset(可以理解为 numpy.array),读取的时候很方便,不会混乱。
  • 可以不覆盖原文件中含有的内容。

简单读取

import numpy as np
import h5py a = np.array(range(20)).reshape((2, 2, 5))
b = np.array(range(20)).reshape((1, 4, 5))
print(a)
print(b) filename = 'data/data.h5'
# 写文件
h5f = h5py.File(filename, 'w')
h5f.create_dataset('a', data=a)
h5f.create_dataset('b', data=b)
h5f.close() # 读文件
h5f = h5py.File(filename, 'r')
print(type(h5f))
# 通过切片得到numpy数组
print(h5f['a'][:])
print(h5f['b'][:])
h5f.close()

通过切片赋值

import numpy as np
import h5py a = np.array(range(20)).reshape((2, 2, 5))
print(a) filename = 'data/a.h5'
# 写文件
h5f = h5py.File(filename, 'w')
# 当数组a太大,需要切片进行操作时,可以不直接对h5f['a']进行初始化;
# 当之后不需要改变h5f['a']的shape时,可以省略maxshape参数
h5f.create_dataset('a', shape=(2, 2, 5), maxshape=(None, 2, 5), dtype=np.int32, compression='gzip')
for i in range(2):
# 采用切片的形式赋值
h5f['a'][i] = a[i]
h5f.close() # 读文件
h5f = h5py.File(filename, 'r')
print(type(h5f))
print(h5f['a'])
# 通过切片得到numpy数组
print(h5f['a'][:])

同一个 hdf5 文件可以创建多个 dataset,读取的时候按照 key 来即可。

总结

  • csv 和 txt 只能用来存一维或二维 numpy 数组;
  • npy 用来存单个 numpy 数组,npz 可以同时存多个 numpy 数组,两者都不限 numpy 维度,且都保持 numpy 数组的 shape 和 dtype,写文件时若原文件存在只能覆盖原文件内容;
  • 当 numpy 数组很大时,最好使用 hdf5 文件,hdf5 文件相对更小;
  • 当 numpy 数组很大时,对整个 numpy 数组进行运算容易发生 MemoryError,那么此时可以选择对 numpy 数组切片,将运算后的数组保存到 hdf5 文件中,hdf5 文件支持切片索引。

References

当Python遇上HDF5--性能优化实战 -- 张玉腾

杂: PYTHON上数据储存:推荐h5py -- Pony_s

numpy数组之读写文件的更多相关文章

  1. python:将numpy数组写入csv文件

    import numpy as np np.savetxt('E:\\forpython\\featvector.csv',data_to_save,delimiter=',')

  2. python : 将txt文件中的数据读为numpy数组或列表

    很多时候,我们将数据存在txt或者csv格式的文件里,最后再用python读取出来,存到数组或者列表里,再做相应计算.本文首先介绍写入txt的方法,再根据不同的需求(存为数组还是list),介绍从tx ...

  3. numpy数组与python的list互转,然后用json写入文件与c交互

    1.对于numpy的tofile方法,一个一维数组可以直接写成二进制形式,用c语言或者numpy.fromfile()可以读出来内容.而如果数组超过一维,tofile并不区分,也就是arr1=[1,2 ...

  4. java读写文件小心缓存数组

    一般我们读写文件的时候都是这么写的,看着没问题哈.   public static void main(String[] args) throws Exception {   FileInputStr ...

  5. 玩转NumPy数组

    一.Numpy 数值类型 1.前言:Python 本身支持的数值类型有 int(整型, long 长整型).float(浮点型).bool(布尔型) 和 complex(复数型).而 Numpy 支持 ...

  6. 计算机程序的思维逻辑 (60) - 随机读写文件及其应用 - 实现一个简单的KV数据库

    57节介绍了字节流, 58节介绍了字符流,它们都是以流的方式读写文件,流的方式有几个限制: 要么读,要么写,不能同时读和写 不能随机读写,只能从头读到尾,且不能重复读,虽然通过缓冲可以实现部分重读,但 ...

  7. C语言读写文件

    对文件的读和写是最常用的文件操作.在C语言中提供了多种文件读写的函数: 字符读写函数  :fgetc和fputc 字符串读写函数:fgets和fputs 数据块读写函数:freed和fwrite 格式 ...

  8. C#常用IO流与读写文件

    .文件系统 ()文件系统类的介绍 文件操作类大都在System.IO命名空间里.FileSystemInfo类是任何文件系统类的基类:FileInfo与File表示文件系统中的文件:Directory ...

  9. java读写文件大全

     java读写文件大全 最初java是不支持对文本文件的处理的,为了弥补这个缺憾而引入了Reader和Writer两个类,这两个类都是抽象类,Writer中 write(char[] ch,int o ...

随机推荐

  1. python之文件读写操作(r/r+/rb/w/w+/wb/a/a+/ab)的作用

    'r':只读.该文件必须已存在. 'r+':可读可写.该文件必须已存在,写为追加在文件内容末尾. 'rb':表示以二进制方式读取文件.该文件必须已存在. 'w':只写.打开即默认创建一个新文件,如果文 ...

  2. perl 引用(数组和hash引用) --- perlreftut - Mark 的一个简单的'引用'教程 ---Understand References Today. --Mark Jason Dominus, Plover Systems (mjd-perl-ref+@plover.com)

    https://blog.csdn.net/fangwei1235/article/details/8570886 首页 博客 学院 下载 论坛 APP 问答 商城 活动 VIP会员 招聘 ITeye ...

  3. dubbo 多连接,多线程池.

    1. consumer 多连接 Dubbo protocol options: <dubbo:protocolname=“dubbo” port=“9090” server=“netty” cl ...

  4. C# 读App.config配置文件[1]:.Net Framework框架

    C# 读App.config配置文件[1]:.Net Framework框架 C# 读App.config配置文件[2]: .Net Core框架 参考:https://www.cnblogs.com ...

  5. sql server存储过程修改,存储到mysql笔记

    由于有些项目要迁移到mysql上,数据迁移用MySQLWorkbench就能很好的迁移,最难的是存储过程之类的. 下面是sql server存储过程和mysql存储过程的转化: SQL SERVER: ...

  6. LeetCode(2)Add Two Numbers

    题目: You are given two linked lists representing two non-negative numbers. The digits are stored in r ...

  7. Codeforces Round #877 (Div. 2) B. - Nikita and string

    题目链接:http://codeforces.com/contest/877/problem/B Nikita and string time limit per test2 seconds memo ...

  8. WIN10配置JDK

    系统变量→新建 JAVA_HOME 变量 变量值填写jdk的安装目录(本人是 E:\Java\jdk1.7.0) 系统变量→寻找 Path 变量→编辑 在变量值最后输入 %JAVA_HOME%\bin ...

  9. ubuntu 执行apt-get update报错Failed to fetch

    在ubuntu下执行sudo apt-get update时,经常会遇到报错: Err http://security.ubuntu.com precise-security InRelease Er ...

  10. JS(异步与单线程)

    JS(异步与单线程) 题目1.同步和异步的区别是什么,试举例(例子见知识点) 区别: 1.同步会阻塞代码执行,而异步不会 2.alert 是同步,setTimeout 是异步 题目2.关于 setTi ...