参考:https://blog.csdn.net/clove_unique/article/details/57405845

死活不过样例看了题解才发现要用double....

\[a_j \leq a_i+p-\sqrt{abs(i-j)}
\]

\[p\geq a_j+\sqrt{abs(i-j)}-a_i
\]

\[p = max\{a_j+\sqrt{abs(i-j)}\}-a_i
\]

\[f_i+a_i = max\{a_j+\sqrt{abs(i-j)}\}
\]

首先正反做两遍,这样就不用考虑绝对值了,答案直接从正反连个数组取max即可

然后看这个转移,发现i-j是递增的,也就是j的取值是单调向右移动的

用分治来做dp

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
const int N=500005;
int n;
double a[N],s[N],f[N],g[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void wk(double f[],int l,int r,int x,int y)
{//cerr<<l<<" "<<r<<" "<<x<<" "<<y<<endl;
if(x>y||l>r)
return;
int mid=(l+r)>>1,w;
double p;
for(int i=x;i<=y&&i<=mid;i++)
if((p=a[i]+s[mid-i])>f[mid])
{
w=i;
f[mid]=p;
}
f[mid]-=a[mid];
wk(f,l,mid-1,x,w);
wk(f,mid+1,r,w,y);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=read(),s[i]=sqrt((double)i);
wk(f,1,n,1,n);
for(int i=1;i<=n/2;i++)
swap(a[i],a[n-i+1]);
wk(g,1,n,1,n);
for(int i=1;i<=n;i++)
printf("%.0lf\n",ceil(max(f[i],g[n-i+1])));
return 0;
}

bzoj 2216: [Poi2011]Lightning Conductor【决策单调性dp+分治】的更多相关文章

  1. LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP

    传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...

  2. [bzoj 2216] [Poi2011] Lightning Conductor

    [bzoj 2216] [Poi2011] Lightning Conductor Description 已知一个长度为n的序列a1,a2,-,an. 对于每个1<=i<=n,找到最小的 ...

  3. 【BZOJ2216】[Poi2011]Lightning Conductor 决策单调性

    [BZOJ2216][Poi2011]Lightning Conductor Description 已知一个长度为n的序列a1,a2,...,an.对于每个1<=i<=n,找到最小的非负 ...

  4. bzoj 2216 [Poi2011]Lightning Conductor——单调队列+二分处理决策单调性

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2216 那个关于位置的代价是带根号的,所以随着距离的增加而增长变慢:所以靠后的位置一旦比靠前的 ...

  5. P3515 [POI2011]Lightning Conductor[决策单调性优化]

    给定一序列,求对于每一个$a_i$的最小非负整数$p_i$,使得$\forall j \neq i $有$ p_i>=a_j-a_i+ \sqrt{|i-j|}$. 绝对值很烦 ,先分左右情况单 ...

  6. 洛谷 P3515 [ POI 2011 ] Lightning Conductor —— 决策单调性DP

    题目:https://www.luogu.org/problemnew/show/P3515 决策单调性... 参考TJ:https://www.cnblogs.com/CQzhangyu/p/725 ...

  7. BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性

    BZOJ_2216_[Poi2011]Lightning Conductor_决策单调性 Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n, ...

  8. 【BZOJ】2216: [Poi2011]Lightning Conductor

    题意 给一个长度为\(n\)的序列\(a_i\),对于每个\(1 \le i \le n\),找到最小的非负整数\(p\)满足 对于任意的\(j\), \(a_j \le a_i + p - \sqr ...

  9. P3515 [POI2011]Lightning Conductor(决策单调性分治)

    P3515 [POI2011]Lightning Conductor 式子可转化为:$p>=a_j-a_i+sqrt(i-j) (j<i)$ $j>i$的情况,把上式翻转即可得到 下 ...

随机推荐

  1. React学习之State

    本文基于React v16.4.1 初学react,有理解不对的地方,欢迎批评指正^_^ 一.定义组件的两种方式 1.函数定义组件 function Welcome(props) { return & ...

  2. POJ 3013 【需要一点点思维...】【乘法分配率】

    题意: (这题明显感觉自己是英语渣) 给n个点从1到n标号,下面一行是每个点的权,另外给出m条边,下面是每条边的信息,两个端点+权值,边是无向边.你的任务是选出一些边,使这个图变成一棵树.这棵树的花费 ...

  3. 某考试 T1 至危警告

    题目大意就是: 设f(x)为x各个位数字之和,求x属于[0,k]且b * f(x)^a + c = x的x个数并升序输出. (a<=5  .  b,c,<=10^4  .   k<= ...

  4. Spring中使用byType实现Beans自动装配

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/beans-auto-wiring/spring-autowiring-byType.html: 此 ...

  5. Spring中使用Log4j记录日志

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/logging-with-log4j.html: 例子: pom.xml: <project ...

  6. 框架-弹出选择框(Jquery传递Json数组)

    给一个button按钮,执行方法 Json传值$("body").on("click", "#btnsure", function() {  ...

  7. @Aspect注解无效

    Pointcut的execution配置正确的话,检查下,是否加了以下jar包 <!-- http://mvnrepository.com/artifact/org.aspectj/aspect ...

  8. Python 之 读取txt文件

    本文直接给出三种实现方法,代码例如以下. 方法一: f = open("Proc_Data.txt") # 返回一个文件对象 line = f.readline() # 调用文件的 ...

  9. 抓包工具Fiddler使用宝典之捕获手机报文

    Fiddler 是通过代理来实现数据捕获的.对 Android 手机来说,也是通过将网络连接的代理指向 PC 机的 Fiddler port.来实现数据包的拦截. 以下,我以我的一次实践为例,向大家介 ...

  10. java类载入器——ClassLoader

    Java的设计初衷是主要面向嵌入式领域,对于自己定义的一些类,考虑使用依需求载入原则.即在程序使用到时才载入类,节省内存消耗,这时就可以通过类载入器来动态载入. 假设你平时仅仅是做web开发,那应该非 ...