Cross the Wall

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 327680/327680 K (Java/Others)
Total Submission(s): 4479    Accepted Submission(s): 812

Problem Description
“Across the Great Wall, we can reach every corner in the world!” Now the citizens of Rectland want to cross the Great Wall. 
The Great Wall is a huge wall with infinite width and height, so the only way to cross is to dig holes in it. All people in Rectland can be considered as rectangles with varying width and height, and they can only dig rectangle holes in the wall. A person can pass through a hole, if and only if the person’s width and height is no more than the hole’s width and height both. To dig a hole with width W and height H, the people should pay W * H dollars. Please note that it is only permitted to dig at most K holes for security consideration, and different holes cannot overlap each other in the Great Wall. Remember when they pass through the wall, they must have their feet landed on the ground.
Given all the persons’ width and height, you are requested to find out the minimum cost for digging holes to make all the persons pass through the wall.
 
Input
There are several test cases. The first line of each case contains two numbers, N (1 <= N <= 50000) and K (1 <= K <= 100), indicating the number of people and the maximum holes allowed to dig. Then N lines followed, each contains two integers wi and hi (1 <= wi, hi <= 1000000), indicating the width and height of each person.
 
Output
Output one line for each test case, indicates the minimum cost.

 
Sample Input
2 1 1 100 100 1 2 2 1 100 100 1
 
Sample Output
10000 200
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  3662 3661 3664 3665 3666 
题目描述:
给你n个人,每个人的宽度和高度已知,最多可以修k个门,修门的花费为门的面积,求最少花费。
d[i][j]=min(d[k][j-1]+p[k+1].w*p[i].h);时间复杂度为5*10^12,可以采用斜率优化或者四边形优化。
采取斜率优化:
设k1>k2,k1优于k2,dp[k1][j-1]+p[k1+1].w*p[i].h<=dp[k2][j-1]+p[k2+1].w*p[i].h;
化简得:dp[k1][j-1]-dp[k2][j-1]<p[i].h*(p[k2+1].w-p[k1+1].w)
预处理d[i][0]=inf,d[0][i]=0;
还需注意i和j的枚举顺序,先枚举j,再枚举i,每次枚举j的时候都需要重新初始化i的解集
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 50100
#define LL long long
#define inf 0x3f3f3f3f3f3f3f3f3f3f
using namespace std;
LL dp[maxn][];
int que[maxn];
int n,k;
int head,tail;
struct node
{
LL w;
LL h;
};
node p[maxn];
bool cmp(node a,node b)
{
if(a.w==b.w)
return a.h<b.h;
else
return a.w>b.w;
}
LL getdp(int i,int j,int k)
{
//return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
return dp[k][j-]+p[k+].w*p[i].h;
} LL getup(int j,int k1,int k2) //yj-yk部分 k1>k2
{
//return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
return dp[k1][j-]-dp[k2][j-];
}
LL getdown(int j,int k1,int k2)
{
//return 2*(sum[j]-sum[k]);
return p[k2+].w-p[k1+].w;
} void solve()
{
head=;
tail=;
que[tail++]=;
dp[][]=;
for(int i=;i<=n;i++)
{
dp[i][]=inf;
dp[][i]=;
}
for(int j=;j<=k;j++)
{
head=tail=;
que[tail++]=;
for(int i=;i<=n;i++)
{
//从头开始找当前状态的最优决策,g[que[head+1],que[head]] < sum[i],说明que[head+1]比que[head]更优,删除que[head]
while(head+ < tail && getup(j,que[head+],que[head]) <= getdown(j,que[head+],que[head]) * p[i].h )
head++; //注意写成相乘,不然要考虑除数是否为负数
dp[i][j]=getdp(i,j,que[head]); //从尾往前,加入当前状态,如果g[i,que[tail]] < g[que[tail],que[tail-1]] ,可以排除que[tail]
while(head+<tail && getup(j,i,que[tail-])*getdown(j,que[tail-],que[tail-])<=getup(j,que[tail-],que[tail-])*getdown(j,i,que[tail-]))
tail--;
que[tail++]=i;
}
} /*for(int j=1;j<=k;j++)
{
for(int i=1;i<=n;i++)
printf("%lld ",dp[i][j]);
printf("\n");
}*/
printf("%lld\n",dp[n][k]); }
int main()
{
while(~scanf("%d%d",&n,&k))
{
//init();
for(int i=;i<=n;i++)
scanf("%lld%lld",&p[i].w,&p[i].h);
sort(p+,p+n+,cmp); int j=;
for(int i=;i<=n;i++)
{
if(p[i].h<p[j].h)
continue;
else
{
p[++j]=p[i];
}
}
n=j;
//for(int i=1;i<=n;i++)
// printf("%lld %lld\n",p[i].w,p[i].h);
solve();
}
return ;
}

四边形优化:

目前位置接触到两种形式的方程可以采用四边形优化:

1

a d[i][j]=min(d[i-1][k]+p[k+1].w*p[i].h)

写成这种形式,而不是上面那种,是因为四边形优化的s[i][j]的递推顺序好写

b s[i-1][j]<s[i][j]<s[i][j+1];

观察a和b式,i从小到大,j从大到小.然后初始化第一行和第n+1列,进行递推。

2 (类似于石子合并)

d[i][j]=d[i][k]+d[k+1][j]+w[i][j]

s[i][j-1]<s[i][j]<s[i+1][j]

这时候的递推顺序,是通过先枚举长度,再枚举起点,然后就可以现在要算的状态之前都算过了。

(超时代码,目前只能写到这了)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 50100
#define LL long long
#define inf 0x3f3f3f3f3f3f3f3f3f3f
using namespace std;
LL d[maxn][];
int w[maxn][];
int n,k;
struct node
{
LL w;
LL h;
};
node p[maxn];
bool cmp(node a,node b)
{
if(a.w==b.w)
return a.h<b.h;
else
return a.w>b.w;
}
void solve()
{
for(int i=;i<=n;i++)
{
d[][i]=p[].w*p[i].h;
w[][i]=; } for(int i=;i<=k;i++)
{
w[i][n+]=n;
for(int j=n;j>=i;j--)
{
d[i][j]=inf;
for(int s=w[i-][j];s<=w[i][j+];s++)
{
if(d[i][j]>(d[i-][s]+p[s+].w*p[j].h) )
{
d[i][j]=(d[i-][s]+p[s+].w*p[j].h);
w[i][j]=s;
}
}
}
}
/*for(int i=0;i<=k;i++)
{
for(int j=0;j<=n+1;j++)
printf("%d ",w[i][j]);
printf("\n");
}
printf("\n");
for(int i=0;i<=k;i++)
{
for(int j=0;j<=n;j++)
printf("%lld ",d[i][j]);
printf("\n");
}*/
printf("%lld\n",d[k][n]); }
int main()
{
while(~scanf("%d%d",&n,&k))
{
//init();
memset(d,,sizeof(d));
for(int i=;i<=n;i++)
scanf("%lld%lld",&p[i].w,&p[i].h);
sort(p+,p+n+,cmp); int j=;
for(int i=;i<=n;i++)
{
if(p[i].h<p[j].h)
continue;
else
{
p[++j]=p[i];
}
}
n=j; solve();
}
return ;
}

hdu 3669(斜率优化DP)的更多相关文章

  1. HDU 4258 斜率优化dp

    Covered Walkway Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  2. HDU 2829 斜率优化DP Lawrence

    题意:n个数之间放m个障碍,分隔成m+1段.对于每段两两数相乘再求和,然后把这m+1个值加起来,让这个值最小. 设: d(i, j)表示前i个数之间放j个炸弹能得到的最小值 sum(i)为前缀和,co ...

  3. hdu 3045 斜率优化DP

    思路:dp[i]=dp[j]+sum[i]-sum[j]-(i-j)*num[j+1]; 然后就是比较斜率. 注意的时这里j+t<=i: #include<iostream> #in ...

  4. Print Article HDU - 3507 -斜率优化DP

    思路 : 1,用一个单调队列来维护解集. 2,假设队列中从头到尾已经有元素a b c.那么当d要入队的时候,我们维护队列的下凸性质, 即如果g[d,c]<g[c,b],那么就将c点删除.直到找到 ...

  5. HDU 3507 斜率优化dp

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  6. HDU 3507斜率优化dp

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  7. HDU 3507 斜率优化 DP Print Article

    在kuangbin巨巨博客上学的. #include <iostream> #include <cstdio> #include <cstring> #includ ...

  8. HDU 2993 MAX Average Problem(斜率优化DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 题目大意:给定一个长度为n(最长为10^5)的正整数序列,求出连续的最短为k的子序列平均值的最大 ...

  9. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

随机推荐

  1. js获取json属性值的两种方法

    1.json.XXX 2.json["XXX"] 第二种方法使用场景,当属性值是变量时.如图所示:

  2. 【ZJOI2017 Round1练习&BZOJ4767】D1T3 两双手(排列组合,DP)

    题意: 100%的数据:|Ax|,|Ay|,|Bx|,|By| <= 500, 0 <= n,Ex,Ey <= 500 思路:听说这是一道原题 只能往右或者下走一步且有禁止点的简化版 ...

  3. 前端学习之-- JavaScript

    JavaScript笔记 参考:http://www.cnblogs.com/wupeiqi/articles/5602773.html javaScript是一门独立的语言,游览器都具有js解释器 ...

  4. Java并发包——线程安全的Collection相关类

    Java并发包——线程安全的Collection相关类 摘要:本文主要学习了Java并发包下线程安全的Collection相关的类. 部分内容来自以下博客: https://www.cnblogs.c ...

  5. 国内代码托管平台(Git和SVN)

        Github(Git和SVN)https://github.com/ 可以说GitHub的出现完全颠覆了以往大家对代码托管网站的认识.GitHub不但是一个代码托管网站,更是一个程序员的SNS ...

  6. poj 3468 A Simple Problem with Integers(线段树、延迟更新)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 74705   ...

  7. css中高度比img多出4px的问题

    一句话概括:为什么<a>标签比里面的img高度多出4px 的问题,主要还是由于 img是inline element, it's height is caculated different ...

  8. Office WORD里面打字,后面的字自动被删除怎么办

    word或其他编辑器里打字以后其后面的字就被自动删除了-解决方案   2011-09-26 14:52:09|  分类: 电脑维护|字号 订阅 解决方法:  再按一下 Insert键 就OK啦 今天有 ...

  9. 微信小程序之 Index(仿淘宝分类入口)

    1.逻辑层 index.js //index.js //获取应用实例 const app = getApp() Page({ /** * 页面的初始数据 */ data: { menu: { imgU ...

  10. 为什么不建议用Table布局

    Tables的缺点 1.Table要比其它html标记占很多其它的字节.(延迟下载时间.占用server很多其它的流量资源.) 2.Tablle会阻挡浏览器渲染引擎的渲染顺序.(会延迟页面的生成速度, ...