hdu 3669(斜率优化DP)
Cross the Wall
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others)
Total Submission(s): 4479 Accepted Submission(s): 812
The Great Wall is a huge wall with infinite width and height, so the only way to cross is to dig holes in it. All people in Rectland can be considered as rectangles with varying width and height, and they can only dig rectangle holes in the wall. A person can pass through a hole, if and only if the person’s width and height is no more than the hole’s width and height both. To dig a hole with width W and height H, the people should pay W * H dollars. Please note that it is only permitted to dig at most K holes for security consideration, and different holes cannot overlap each other in the Great Wall. Remember when they pass through the wall, they must have their feet landed on the ground.
Given all the persons’ width and height, you are requested to find out the minimum cost for digging holes to make all the persons pass through the wall.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 50100
#define LL long long
#define inf 0x3f3f3f3f3f3f3f3f3f3f
using namespace std;
LL dp[maxn][];
int que[maxn];
int n,k;
int head,tail;
struct node
{
LL w;
LL h;
};
node p[maxn];
bool cmp(node a,node b)
{
if(a.w==b.w)
return a.h<b.h;
else
return a.w>b.w;
}
LL getdp(int i,int j,int k)
{
//return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
return dp[k][j-]+p[k+].w*p[i].h;
} LL getup(int j,int k1,int k2) //yj-yk部分 k1>k2
{
//return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
return dp[k1][j-]-dp[k2][j-];
}
LL getdown(int j,int k1,int k2)
{
//return 2*(sum[j]-sum[k]);
return p[k2+].w-p[k1+].w;
} void solve()
{
head=;
tail=;
que[tail++]=;
dp[][]=;
for(int i=;i<=n;i++)
{
dp[i][]=inf;
dp[][i]=;
}
for(int j=;j<=k;j++)
{
head=tail=;
que[tail++]=;
for(int i=;i<=n;i++)
{
//从头开始找当前状态的最优决策,g[que[head+1],que[head]] < sum[i],说明que[head+1]比que[head]更优,删除que[head]
while(head+ < tail && getup(j,que[head+],que[head]) <= getdown(j,que[head+],que[head]) * p[i].h )
head++; //注意写成相乘,不然要考虑除数是否为负数
dp[i][j]=getdp(i,j,que[head]); //从尾往前,加入当前状态,如果g[i,que[tail]] < g[que[tail],que[tail-1]] ,可以排除que[tail]
while(head+<tail && getup(j,i,que[tail-])*getdown(j,que[tail-],que[tail-])<=getup(j,que[tail-],que[tail-])*getdown(j,i,que[tail-]))
tail--;
que[tail++]=i;
}
} /*for(int j=1;j<=k;j++)
{
for(int i=1;i<=n;i++)
printf("%lld ",dp[i][j]);
printf("\n");
}*/
printf("%lld\n",dp[n][k]); }
int main()
{
while(~scanf("%d%d",&n,&k))
{
//init();
for(int i=;i<=n;i++)
scanf("%lld%lld",&p[i].w,&p[i].h);
sort(p+,p+n+,cmp); int j=;
for(int i=;i<=n;i++)
{
if(p[i].h<p[j].h)
continue;
else
{
p[++j]=p[i];
}
}
n=j;
//for(int i=1;i<=n;i++)
// printf("%lld %lld\n",p[i].w,p[i].h);
solve();
}
return ;
}
四边形优化:
目前位置接触到两种形式的方程可以采用四边形优化:
1
a d[i][j]=min(d[i-1][k]+p[k+1].w*p[i].h)
写成这种形式,而不是上面那种,是因为四边形优化的s[i][j]的递推顺序好写
b s[i-1][j]<s[i][j]<s[i][j+1];
观察a和b式,i从小到大,j从大到小.然后初始化第一行和第n+1列,进行递推。
2 (类似于石子合并)
d[i][j]=d[i][k]+d[k+1][j]+w[i][j]
s[i][j-1]<s[i][j]<s[i+1][j]
这时候的递推顺序,是通过先枚举长度,再枚举起点,然后就可以现在要算的状态之前都算过了。
(超时代码,目前只能写到这了)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 50100
#define LL long long
#define inf 0x3f3f3f3f3f3f3f3f3f3f
using namespace std;
LL d[maxn][];
int w[maxn][];
int n,k;
struct node
{
LL w;
LL h;
};
node p[maxn];
bool cmp(node a,node b)
{
if(a.w==b.w)
return a.h<b.h;
else
return a.w>b.w;
}
void solve()
{
for(int i=;i<=n;i++)
{
d[][i]=p[].w*p[i].h;
w[][i]=; } for(int i=;i<=k;i++)
{
w[i][n+]=n;
for(int j=n;j>=i;j--)
{
d[i][j]=inf;
for(int s=w[i-][j];s<=w[i][j+];s++)
{
if(d[i][j]>(d[i-][s]+p[s+].w*p[j].h) )
{
d[i][j]=(d[i-][s]+p[s+].w*p[j].h);
w[i][j]=s;
}
}
}
}
/*for(int i=0;i<=k;i++)
{
for(int j=0;j<=n+1;j++)
printf("%d ",w[i][j]);
printf("\n");
}
printf("\n");
for(int i=0;i<=k;i++)
{
for(int j=0;j<=n;j++)
printf("%lld ",d[i][j]);
printf("\n");
}*/
printf("%lld\n",d[k][n]); }
int main()
{
while(~scanf("%d%d",&n,&k))
{
//init();
memset(d,,sizeof(d));
for(int i=;i<=n;i++)
scanf("%lld%lld",&p[i].w,&p[i].h);
sort(p+,p+n+,cmp); int j=;
for(int i=;i<=n;i++)
{
if(p[i].h<p[j].h)
continue;
else
{
p[++j]=p[i];
}
}
n=j; solve();
}
return ;
}
hdu 3669(斜率优化DP)的更多相关文章
- HDU 4258 斜率优化dp
Covered Walkway Time Limit: 30000/10000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU 2829 斜率优化DP Lawrence
题意:n个数之间放m个障碍,分隔成m+1段.对于每段两两数相乘再求和,然后把这m+1个值加起来,让这个值最小. 设: d(i, j)表示前i个数之间放j个炸弹能得到的最小值 sum(i)为前缀和,co ...
- hdu 3045 斜率优化DP
思路:dp[i]=dp[j]+sum[i]-sum[j]-(i-j)*num[j+1]; 然后就是比较斜率. 注意的时这里j+t<=i: #include<iostream> #in ...
- Print Article HDU - 3507 -斜率优化DP
思路 : 1,用一个单调队列来维护解集. 2,假设队列中从头到尾已经有元素a b c.那么当d要入队的时候,我们维护队列的下凸性质, 即如果g[d,c]<g[c,b],那么就将c点删除.直到找到 ...
- HDU 3507 斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507 斜率优化 DP Print Article
在kuangbin巨巨博客上学的. #include <iostream> #include <cstdio> #include <cstring> #includ ...
- HDU 2993 MAX Average Problem(斜率优化DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 题目大意:给定一个长度为n(最长为10^5)的正整数序列,求出连续的最短为k的子序列平均值的最大 ...
- hdu 2829 Lawrence(斜率优化DP)
题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...
随机推荐
- 【HDOJ6343】Graph Theory Homework(贪心)
题意: 给定n个点,每个点有权值a[i],从A走到B的花费是下取整sqrt(a[i]-a[j]),求从1号点走到n号点的最小花费 1<=n,a[i]<=1e5 思路: #include&l ...
- 【NOIP模拟】数字对(RMQ,二分)
题意:小H是个善于思考的学生,现在她又在思考一个有关序列的问题. 她的面前浮现出一个长度为n的序列{ai},她想找出一段区间[L, R](1 <= L <= R <= n). 这个特 ...
- [bzoj3998][TJOI2015]弦论_后缀自动机
弦论 bzoj-3998 TJOI-2015 题目大意:给定一个字符串,求其$k$小子串. 注释:$1\le length \le 5\cdot 10^5$,$1\le k\le 10^9$. 想法: ...
- P1194 买礼物 洛谷
https://www.luogu.org/problem/show?pid=1194 题目描述 又到了一年一度的明明生日了,明明想要买B样东西,巧的是,这B样东西价格都是A元. 但是,商店老板说最近 ...
- SpringMvc架构流程
- javascript 语法规范错误提示代码
“Missing semicolon.” : “缺少分号.”, “Use the function form of \”use strict\”.” : “使用标准化定义function.”, “Un ...
- Essay
要养成先连续输入一对匹配的字符——比如"("和")",以及"{"和"}"——再在其中填写内容的习惯.如果先填写内容,很容 ...
- 修正iOS从照相机和相册中获取的图片 方向
修正iOS从照相机和相册中获取的图片 方向 修正iOS从照相机和相册中获取的图片 方向 使用系统相机拍照得到的图片的默认方向有时不是ImageOrientationDown,而是ImageOrie ...
- IOS开发之----常用的基本GDB命令【转】
原文地址:http://blog.sina.com.cn/s/blog_71715bf801016d2y.html gdb不是万能的,可是没有gdb却是万万不能的.这里给大家简单介绍下iOS开发中最基 ...
- [办公自动化]计算机突然断电,微软office文档(有asd文件)如何恢复?
今天同事使用office软件时,突然故障.结果他忙了半天的word文档内容都找不见了. 经过查找,在其硬盘根目录找到了asd文档. 但是用当前版本的word和高版本的word软件都无法打开. 又查找了 ...