hdu 3669(斜率优化DP)
Cross the Wall
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others)
Total Submission(s): 4479 Accepted Submission(s): 812
The Great Wall is a huge wall with infinite width and height, so the only way to cross is to dig holes in it. All people in Rectland can be considered as rectangles with varying width and height, and they can only dig rectangle holes in the wall. A person can pass through a hole, if and only if the person’s width and height is no more than the hole’s width and height both. To dig a hole with width W and height H, the people should pay W * H dollars. Please note that it is only permitted to dig at most K holes for security consideration, and different holes cannot overlap each other in the Great Wall. Remember when they pass through the wall, they must have their feet landed on the ground.
Given all the persons’ width and height, you are requested to find out the minimum cost for digging holes to make all the persons pass through the wall.
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 50100
#define LL long long
#define inf 0x3f3f3f3f3f3f3f3f3f3f
using namespace std;
LL dp[maxn][];
int que[maxn];
int n,k;
int head,tail;
struct node
{
LL w;
LL h;
};
node p[maxn];
bool cmp(node a,node b)
{
if(a.w==b.w)
return a.h<b.h;
else
return a.w>b.w;
}
LL getdp(int i,int j,int k)
{
//return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
return dp[k][j-]+p[k+].w*p[i].h;
} LL getup(int j,int k1,int k2) //yj-yk部分 k1>k2
{
//return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
return dp[k1][j-]-dp[k2][j-];
}
LL getdown(int j,int k1,int k2)
{
//return 2*(sum[j]-sum[k]);
return p[k2+].w-p[k1+].w;
} void solve()
{
head=;
tail=;
que[tail++]=;
dp[][]=;
for(int i=;i<=n;i++)
{
dp[i][]=inf;
dp[][i]=;
}
for(int j=;j<=k;j++)
{
head=tail=;
que[tail++]=;
for(int i=;i<=n;i++)
{
//从头开始找当前状态的最优决策,g[que[head+1],que[head]] < sum[i],说明que[head+1]比que[head]更优,删除que[head]
while(head+ < tail && getup(j,que[head+],que[head]) <= getdown(j,que[head+],que[head]) * p[i].h )
head++; //注意写成相乘,不然要考虑除数是否为负数
dp[i][j]=getdp(i,j,que[head]); //从尾往前,加入当前状态,如果g[i,que[tail]] < g[que[tail],que[tail-1]] ,可以排除que[tail]
while(head+<tail && getup(j,i,que[tail-])*getdown(j,que[tail-],que[tail-])<=getup(j,que[tail-],que[tail-])*getdown(j,i,que[tail-]))
tail--;
que[tail++]=i;
}
} /*for(int j=1;j<=k;j++)
{
for(int i=1;i<=n;i++)
printf("%lld ",dp[i][j]);
printf("\n");
}*/
printf("%lld\n",dp[n][k]); }
int main()
{
while(~scanf("%d%d",&n,&k))
{
//init();
for(int i=;i<=n;i++)
scanf("%lld%lld",&p[i].w,&p[i].h);
sort(p+,p+n+,cmp); int j=;
for(int i=;i<=n;i++)
{
if(p[i].h<p[j].h)
continue;
else
{
p[++j]=p[i];
}
}
n=j;
//for(int i=1;i<=n;i++)
// printf("%lld %lld\n",p[i].w,p[i].h);
solve();
}
return ;
}
四边形优化:
目前位置接触到两种形式的方程可以采用四边形优化:
1
a d[i][j]=min(d[i-1][k]+p[k+1].w*p[i].h)
写成这种形式,而不是上面那种,是因为四边形优化的s[i][j]的递推顺序好写
b s[i-1][j]<s[i][j]<s[i][j+1];
观察a和b式,i从小到大,j从大到小.然后初始化第一行和第n+1列,进行递推。
2 (类似于石子合并)
d[i][j]=d[i][k]+d[k+1][j]+w[i][j]
s[i][j-1]<s[i][j]<s[i+1][j]
这时候的递推顺序,是通过先枚举长度,再枚举起点,然后就可以现在要算的状态之前都算过了。
(超时代码,目前只能写到这了)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 50100
#define LL long long
#define inf 0x3f3f3f3f3f3f3f3f3f3f
using namespace std;
LL d[maxn][];
int w[maxn][];
int n,k;
struct node
{
LL w;
LL h;
};
node p[maxn];
bool cmp(node a,node b)
{
if(a.w==b.w)
return a.h<b.h;
else
return a.w>b.w;
}
void solve()
{
for(int i=;i<=n;i++)
{
d[][i]=p[].w*p[i].h;
w[][i]=; } for(int i=;i<=k;i++)
{
w[i][n+]=n;
for(int j=n;j>=i;j--)
{
d[i][j]=inf;
for(int s=w[i-][j];s<=w[i][j+];s++)
{
if(d[i][j]>(d[i-][s]+p[s+].w*p[j].h) )
{
d[i][j]=(d[i-][s]+p[s+].w*p[j].h);
w[i][j]=s;
}
}
}
}
/*for(int i=0;i<=k;i++)
{
for(int j=0;j<=n+1;j++)
printf("%d ",w[i][j]);
printf("\n");
}
printf("\n");
for(int i=0;i<=k;i++)
{
for(int j=0;j<=n;j++)
printf("%lld ",d[i][j]);
printf("\n");
}*/
printf("%lld\n",d[k][n]); }
int main()
{
while(~scanf("%d%d",&n,&k))
{
//init();
memset(d,,sizeof(d));
for(int i=;i<=n;i++)
scanf("%lld%lld",&p[i].w,&p[i].h);
sort(p+,p+n+,cmp); int j=;
for(int i=;i<=n;i++)
{
if(p[i].h<p[j].h)
continue;
else
{
p[++j]=p[i];
}
}
n=j; solve();
}
return ;
}
hdu 3669(斜率优化DP)的更多相关文章
- HDU 4258 斜率优化dp
Covered Walkway Time Limit: 30000/10000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- HDU 2829 斜率优化DP Lawrence
题意:n个数之间放m个障碍,分隔成m+1段.对于每段两两数相乘再求和,然后把这m+1个值加起来,让这个值最小. 设: d(i, j)表示前i个数之间放j个炸弹能得到的最小值 sum(i)为前缀和,co ...
- hdu 3045 斜率优化DP
思路:dp[i]=dp[j]+sum[i]-sum[j]-(i-j)*num[j+1]; 然后就是比较斜率. 注意的时这里j+t<=i: #include<iostream> #in ...
- Print Article HDU - 3507 -斜率优化DP
思路 : 1,用一个单调队列来维护解集. 2,假设队列中从头到尾已经有元素a b c.那么当d要入队的时候,我们维护队列的下凸性质, 即如果g[d,c]<g[c,b],那么就将c点删除.直到找到 ...
- HDU 3507 斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507斜率优化dp
Print Article Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)To ...
- HDU 3507 斜率优化 DP Print Article
在kuangbin巨巨博客上学的. #include <iostream> #include <cstdio> #include <cstring> #includ ...
- HDU 2993 MAX Average Problem(斜率优化DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2993 题目大意:给定一个长度为n(最长为10^5)的正整数序列,求出连续的最短为k的子序列平均值的最大 ...
- hdu 2829 Lawrence(斜率优化DP)
题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...
随机推荐
- HDU 2222 最简单的AC自动机套模板应用
HDU 2222 题意:给出N(N<=10,000)个单词,每个单词长度不超过50.再给出一个字符串S,字符串长度不超过1,000,000.问有多少个单词出现在了字符串S中.(单词可能重复,单词 ...
- [luoguP1169] [ZJOI2007]棋盘制作(单调栈)
传送门 和玉蟾宫差不多 ——代码 #include <cstdio> #include <iostream> using namespace std; ; int n, m, ...
- Genymotion 常见问题Unable to configure the network adapter for the virtual device解决
Genymotion 常见问题Unable to configure the network adapter for the virtual device解决 参考:http://www.pczhis ...
- 【ZJOI2017 Round1练习&BZOJ4766】D1T2 文艺计算姬(Prufer编码)
题意:给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图K_{n,m},求其生成树个数 mod p. 100%的数据:1 <= n,m,p <= 10^18 思路:这是 ...
- python学习之 - XML
xml模块定义:实现不同语言或程序之间进行数据交换的协议.格式如下:通过<>节点来区别数据结构如:<load-on-startup(这个是标签) test="value&q ...
- Codeforces 938G(cdq分治+可撤销并查集+线性基)
题意: 有一个无向连通图,支持三个操作: 1 x y d : 新建一条x和y的无向边,长度为d 2 x y :删除x和y之间的无向边 3 x y :询问x到y的所有路径中(可以绕环)最短的 ...
- hdu6212 祖玛(区间DP)
题意 有一个长度为n的01串,我们可以在某个地方插入一个0或者1,那么如果有连续颜色相同的>=3个,那么这段就会消去,两边的合拢.问将所有01串消去,最少需要插入多少个.(n<=200) ...
- Java日志框架-logback配置文件多环境日志配置(开发、测试、生产)(原始解决方法)
说明:这种方式应该算是最通用的,原理是通过判断标签实现. <!-- if-then form --> <if condition="some conditional exp ...
- Exception: Could not bind to 0.0.0.0:8080 after trying for 30 seconds
swift@vincent-virtual-machine /etc/swift $ sudo swift-init main restart Signal proxy-server pid: sig ...
- Highways POJ 2485【Prim】
Description The island nation of Flatopia is perfectly flat. Unfortunately, Flatopia has no public h ...