洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)
首先要发现,每一次选择拔高的区间都必须包含最右边的端点
为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点
我们枚举$i$表示考虑到第$i$个玉米,设$dp[j][k]$表示为$j$,$i$被覆盖次数为$k$时的最大长度,那么不难发现$j=h[i]+k$
那么很明显转移是$dp[j][k]=max\{dp[a][b]\}(a\leq j,b\leq k)$(因为它左边的覆盖次数不可能大于它,而且得满足是一个单调不降序列)
于是用二维树状数组维护即可
然后因为树状数组不能取到0,所以把树状数组的第二位整体右移一位
//minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,:;}
int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e4+,K=,M=;
int n,k,mx,ans;
int h[N],c[M][K];
void update(int x,int y,int z){
for(;x<=mx+k;x+=x&-x)
for(int i=y;i<=k+;i+=i&-i)
cmax(c[x][i],z);
}
int query(int x,int y){
int res=;
for(;x;x-=x&-x)
for(int i=y;i;i-=i&-i)
cmax(res,c[x][i]);
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),k=read();
for(int i=;i<=n;++i) cmax(mx,h[i]=read());
for(int i=;i<=n;++i) for(int j=k;j>=;--j){
int x=query(h[i]+j,j+)+;cmax(ans,x);
update(h[i]+j,j+,x);
}
printf("%d\n",ans);
return ;
}
洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)的更多相关文章
- 洛谷 P3287 - [SCOI2014]方伯伯的玉米田(BIT 优化 DP)
洛谷题面传送门 怎么题解区全是 2log 的做法/jk,这里提供一种 1log 并且代码更短(bushi)的做法. 首先考虑对于一个序列 \(a\) 怎样计算将其变成单调不降的最小代价.对于这类涉及区 ...
- bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...
- bzoj3594 方伯伯的玉米田 树状数组优化dp
f[i][j]表示到第i位,使用了j次机会的最长不下降子序列长度 转移:f[i][j]=max(f[x][y])+1; x<i; y<=j; a[x]+y<=a[i]+j; 所以根据 ...
- 【题解】Luogu P3287 [SCOI2014]方伯伯的玉米田
原题传送门 一眼就能看出来这是一道dp题 显而易见每次操作的右端点一定是n,每株玉米被拔高的次数随位置不下降 用f(i,j) 表示以第i 株玉米结尾它被拔高了j 次的最长序列长度. \(f(i,j)= ...
- P3287 [SCOI2014]方伯伯的玉米田
首先可以证明,一定存在一种最优解,每次选择的区间结尾都是 \(n\).因为如果某一个区间结尾不是 \(n\),将其替换成 \(n\) 仍然保持单调不下降.接着都按这个策略拔高玉米. 令 \(f_{i, ...
- 洛谷P3286 [SCOI2014]方伯伯的商场之旅
题目:洛谷P3286 [SCOI2014]方伯伯的商场之旅 思路 数位DP dalao说这是数位dp水题,果然是我太菜了... 自己是不可能想出来的.这道题在讲课时作为例题,大概听懂了思路,简单复述一 ...
- 洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树
洛谷P3285 [SCOI2014]方伯伯的OJ 动态开点平衡树 题目描述 方伯伯正在做他的 \(Oj\) .现在他在处理 \(Oj\) 上的用户排名问题. \(Oj\) 上注册了 \(n\) 个用户 ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MB Submit: 1399 Solved: 627 [Submit][ ...
随机推荐
- JOI 2019 Final合集
JOI 2019 Final 合集 #3010. 「JOI 2019 Final」勇者比太郎 其实如果读懂题了就是水题了 题目就是让你求满足条件的\(JOI\),使得\(O\)在\(J\)同行的 ...
- BZOJ——4195: [Noi2015]程序自动分析
http://www.lydsy.com/JudgeOnline/problem.php?id=4195 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: ...
- Java开发笔记(一百)线程同步synchronized
多个线程一起办事固然能够加快处理速度,但是也带来一个问题:两个线程同时争抢某个资源时该怎么办?看来资源共享的另一面便是资源冲突,正所谓鱼与熊掌不可兼得,系统岂能让多线程这项技术专占好处?果然是有利必有 ...
- Linux下异常信号
我们介绍一些标准信号的名称以及它们代表的事件.每一个信号名称是一个代表正整数的宏,但是你不要试图去推测宏代表的具体数值,而是直接使用名称.这是因为这个数值会随不同的系统或同样系统的不同版本而不同,但是 ...
- 【C++基础 02】深拷贝和浅拷贝
我的主题是.每天积累一点点. =========================================== 在类定义中,假设没有提供自己的拷贝构造函数,则C++提供一个默认拷贝构造函数. C ...
- HUNT:一款可提升漏洞扫描能力的BurpSuite漏洞扫描插件
今天给大家介绍的是一款BurpSuite插件,这款插件名叫HUNT.它不仅可以识别指定漏洞类型的常见攻击参数,而且还可以在BurpSuite中组织测试方法. HUNT Scanner(hunt_sca ...
- Office EXCEL 创建图片超链接打不开怎么办 Excel打开图片提示发生了意外错误怎么办
如下图所示,点击超链接提示无法打开指定的文件 如果使用Office打开,则提示发生了意外错误 你需要先把IE浏览器打开,这样就可以打开了,并非是图像的相对位置不正确导致的.
- Android 4.4.2 动态加入JNI库方法记录 (二 app应用层)
欢迎转载,务必注明出处:http://blog.csdn.net/wang_shuai_ww/article/details/44458553 源代码下载地址:http://download.csdn ...
- oracle sql 超长报ORA-01460错误
程序查找数据的时候报错了: ORA-01460: 转换请求无法实施或不合理 这是什么鬼?不合理你就提嘛,报错干什么. 程序原本好好的,现在突然报错了.数据库并没有什么更改. 后来猜测是因为执行的SQL ...
- 装饰器的初识,基于bootstrap的前端开发
1装饰器的初识 概念:不改变函数原来的调用方式,动态地给函数添加功能 开放封闭的原则:1>对添加的新功能是开放的,32>不要在元代码进行修改(封闭) 1.1>函数的定义:对代码块和功 ...