题目传送门

题意:求高次方程的解及其个数。其中

我们知道,高次方程是没有求根公式的。但是利用逆向思维,我们可以进行“试根法”,因为题目中给出了所求根的范围。但是多项式系数过于吓人,达到了sxbk的1e10000.longlong显然盛不下。只能看做字符串处理。然而即使是处理成字符串,我们也不可能真的去乘这么多。

考虑取膜。我们把多项式系数进行取膜,它的相对效果和不取膜是一样的。(想一想,为什么)

除了对系数取膜,我们还可以考虑对x取膜。

- 如果 X 真的是一个根,那么取模后肯定是 0;但反之则是不确定。
- 逆否命题:如果取模之后不是 0,那么 X 肯定不是一个根。
- 我们就利用上面的这条性质来判断即可。

- 考虑一个较小的模数 p。
- 如果对于 0<x<p 来说,代入 x 计算后不是 0,则那么对于 x+p,
x+2p, x+3p...,这些数代入计算后都不可能为 0。
- 所以我们只需要验证[1,p)之间的数,剩下的可以直接推得。
- 时间复杂度: O(TMN)。其中 T 为模数的个数 P。
我们当然还不能仅用一个数取膜,需要多个质数(通常用质数)来提高正确率,这并不是一个精确的算法,但在大多数情况下成立。

难道在x比较小的时候,我们计算这个多项式的值也需要暴力搞嘛?

我们智慧的先人秦九韶早就计算了一种计算多项式的简化方法,复杂度O(n)

(你可以在高中数学必修3中学到它)

它大概长这样:

它的代码大概长这样:

 bool check(int x,int mo)
{
ll num=;
for(int i=n+;i>=;i--)
num=(num*x+a[i][mo])%prime[mo];
return num==;
}

于是我们就可以 快速求解多项式的值了。

至此,本题就结束了=w=。

复杂度O(TMN),T为选取模数的个数。

Code

 #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
typedef long long ll; int n,m,ans;
char op[];
int a[][];
bool vis[];
int prime[]={,,,,,}; void read(int pos)
{
bool flag=;
int st=;
scanf("%s",op+);
if(op[]=='-') flag=,st=;
else st=;
for(int i=st;i<=strlen(op+);i++)
for(int j=;j<=;j++)
a[pos][j]=(a[pos][j]*+op[i]-'')%prime[j];
if(flag)
for(int j=;j<=;j++)
a[pos][j]=(prime[j]-a[pos][j])%prime[j];
} bool check(int x,int mo)
{
ll num=;
for(int i=n+;i>=;i--)
num=(num*x+a[i][mo])%prime[mo];
return num==;
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n+;i++) read(i);
for(int j=;j<=;j++)
{
int limit=min(prime[j]-,m);
for(int i=;i<=limit;i++)
if(!check(i,j))
for(int k=i;k<=m;k+=prime[j])
vis[k]=;
}
for(int i=;i<=m;i++)
if(!vis[i]) ans++;
if(!ans){printf("");return ;}
else printf("%d\n",ans);
for(int i=;i<=m;i++)
if(!vis[i]) printf("%d\n",i);
return ;
}

*  开始交的时候脑子抽了以为1e6是100000于是愉快地RE了三个点233

NOIp 2014 解方程 【数学/秦九韶算法/大数取膜】By cellur925的更多相关文章

  1. [NOIp 2014]解方程

    Description 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) Input 输入文件名为equation .i ...

  2. [BZOJ3751] [NOIP2014] 解方程 (数学)

    Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...

  3. 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】

    3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4856  Solved: 983[Submit][Status ...

  4. BZOJ 3751: [NOIP2014]解方程 数学

    3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...

  5. 【NOIP】提高组2014 解方程

    [题意]已知n次方程(n<=100)及其所有系数(|ai|<=10^10000),求[1,m]中整数解的个数(m<=10^6). [算法]数论 [题解]如果f(x)=0,则有f(x) ...

  6. [BZOJ3751][NOIP2014]解方程(数学相关+乱搞)

    题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...

  7. 【NOIP TG 解方程】

    存代码: #include<cstdio> #include<cstdlib> #include<cstring> #include<iostream> ...

  8. hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925

    首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求 ...

  9. 解方程(hash,秦九韶算法)

    题目描述 已知多项式方程: a0+a1x+a2x2+⋯+anxn=0 求这个方程在 [1,m]内的整数解(n 和 m 均为正整数). 输入输出格式 输入格式: 共 n+2 行. 第一行包含 2个整数 ...

随机推荐

  1. 怎样查询锁表的SQL

    通过以下的语句查询出锁表的SQL: select l.session_id sid, s.serial#,        l.locked_mode,        l.oracle_username ...

  2. VB.net版机房收费系统——结账功能实现(调错与优化)

    调错部分 上一篇博客<VB.net版机房收费系统--结账功能实现(代码部分>说的是结账功能的实现,亮出了代码.是在为这篇博客做铺垫.尽管结账功能代码是借鉴的巨人的博客.可是自己比着葫芦画瓢 ...

  3. Arcgis Engine(ae)接口详解(6):workspace操作

    //此处用的workspace来源与用户选择 IWorkspace workspace = null; //workspace一般等同于数据库 //工作空间类型,也可理解为数据库类型 //esriFi ...

  4. 浅谈C#中常见的委托

    一提到委托,浮现在我们脑海中的大概是听的最多的就是类似C++的函数指针吧,呵呵,至少我的第一个反应是这样的. 关于委托的定义和使用,已经有诸多的人讲解过,并且讲解细致入微,尤其是张子阳的那一篇.我就不 ...

  5. 中断线程Interrupt()

    以下是参考<<Java多线程模式>>的 1. sleep() & interrupt() 线程A正在使用sleep()暂停着: Thread.sleep(100000) ...

  6. Shell编程——Shell中的数学运算

    在Linux Shell中进行数学运算,通常能够使用的运算符有: 简单运算: let [] (()) 高级运算: expr bc 1.let命令 let命令是bash内置命令.能够实现简单的算术以及逻 ...

  7. Linux Linker

    文章原文:http://zhidao.baidu.com/link?url=U2Mtcc6BKi4vuQ1MO8U6s9gNm4y9Epphz03veA2lVpRWMozyVdj0PYvw1ZU9qj ...

  8. p1199八数码问题

    oj上简化的八数码问题,最强的数据仅仅是20步: 根据曼哈顿距离构造启发函数: 主算法:IDA*:(使用方法好像不太对......) 未用位运算优化: #include<iostream> ...

  9. android user 版本如何默认adb调试为打开【转】

    本文转载自:http://blog.csdn.net/chaihuasong/article/details/50342119 A. 软件准备 user版本需要先打开USB debug开关,打开方式如 ...

  10. css盒子模型详解一

    什么是CSS的盒子模式呢?为什么叫它是盒子?先说说我们在网页设计中常听的属性名:内容(content).填充(padding).边框(border).边界(margin), CSS盒子模式都具备这些属 ...