传送门

2-SAT裸题

把每一道菜拆成两个点分别表示用汉式或满式

连边可以参考板子->这里

然后最尴尬的是我没发现$n<=100$然后化成整数的时候只考虑了$s[1]$结果炸掉了2333

 //minamoto
#include<cstdio>
#include<cstring>
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,:;}
const int N=,M=;
int head[N],Next[M],ver[M],tot;
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
}
int dfn[N],low[N],bl[N],st[N],num,cnt,top,n,m;
inline void clear(){
memset(dfn,,sizeof(dfn)),
memset(low,,sizeof(low)),
memset(bl,,sizeof(bl)),
memset(st,,sizeof(st)),
memset(head,,sizeof(head));
top=cnt=num=tot=;
}
void tarjan(int u){
dfn[u]=low[u]=++num,st[++top]=u;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(!dfn[v]) tarjan(v),cmin(low[u],low[v]);
else if(!bl[v]) cmin(low[u],dfn[v]);
}
if(dfn[u]==low[u]) for(++cnt;st[top+]!=u;--top) bl[st[top]]=cnt;
}
char s[],ss[];
void solve(){
clear();
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i){
scanf("%s%s",s,ss);
int a=s[]=='m',c=ss[]=='m';
int b=,d=,k;
k=;while(s[k]>=''&&s[k]<='') b=b*+s[k++]-'';
k=;while(ss[k]>=''&&ss[k]<='') d=d*+ss[k++]-'';
add(b+(!a)*n,d+c*n),add(d+(!c)*n,b+a*n);
}
for(int i=,l=*n;i<=l;++i) if(!dfn[i]) tarjan(i);
for(int i=;i<=n;++i)
if(bl[i]==bl[i+n]) return (void)(puts("BAD"));
puts("GOOD");
}
int main(){
// freopen("testdata.in","r",stdin);
int T;scanf("%d",&T);
while(T--) solve();
return ;
}

P4171 [JSOI2010]满汉全席(2-SAT)的更多相关文章

  1. 洛谷 P4171 [JSOI2010]满汉全席 解题报告

    P4171 [JSOI2010]满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高 ...

  2. 洛谷P4171 [JSOI2010] 满汉全席 [2-SAT,Tarjan]

    题目传送门 满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉 ...

  3. P4171 [JSOI2010]满汉全席

    简要的学了一下2-sat,然而不会输出方案. 就是个sb模板题啦 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il ...

  4. [洛谷P4171][JSOI2010]满汉全席

    题目大意:有$n$个点,每个点可以选或不选,有$m$组约束,形如$a,u,b,v$,表示$u=a,v=b$中至少要满足一个条件,问是否存在一组解,多组询问 题解:$2-SAT$,感觉是板子题呀,最后判 ...

  5. Luogu P4171 [JSOI2010]满汉全席 2-sat

    终于搞懂了\(2-sat\).实际上是个挺简单的东西,像网络流一样关键在于建模. 问题:\(n\)个数\(A\),可以选择\(0\)和\(1\),现在给你\(m\)组条件\(A\),\(B\),对每个 ...

  6. LUOGU P4171 [JSOI2010]满汉全席

    传送门 解题思路 2-SAT 裸题. 代码 #include<iostream> #include<cstdio> #include<cstring> #inclu ...

  7. bzoj1823 [JSOI2010]满汉全席(2-SAT)

    1823: [JSOI2010]满汉全席 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1246  Solved: 598[Submit][Status ...

  8. BZOJ 1823: [JSOI2010]满汉全席( 2-sat )

    2-sat...假如一个评委喜好的2样中..其中一样没做, 那另一样就一定要做, 这样去建图..然后跑tarjan. 时间复杂度O((n+m)*K) ------------------------- ...

  9. BZOJ_1823_[JSOI2010]满汉全席_2-sat+tarjan

    BZOJ_1823_[JSOI2010]满汉全席_2-sat 题意:http://www.lydsy.com/JudgeOnline/problem.php?id=1823 分析:一道比较容易看出来的 ...

随机推荐

  1. Intel Naming Strategy--2

    http://en.wikipedia.org/wiki/Intel_Corporation#Naming_strategy Naming strategy[edit] In 2006, Intel ...

  2. 当电视沦为“情怀”,5G能不能拯救它?(zz)

    文|佘凯文 来源|智能相对论(aixdlun) 现阶段,智能家居行业极度期待5G的到来,甚至超过手机.行业对于颠覆性的升级的欲望极其强烈,纵观整个智能家居行业,除了像智能音箱外的偶尔单品能够“引爆”市 ...

  3. 使用MegaCli查看raid信息

    LSI SAS based MegaRAID driver http://www.lsi.com/downloads/Public/Nytro/downloads/Nytro%20XD/MegaCli ...

  4. layer弹出层不居中解决方案,仅显示遮罩,没有弹窗

    问题:项目中layer询问层的弹窗仅显示遮罩层,并不显示弹窗…… 原因:图片太多将layer弹窗挤出屏幕下方,看不见了…… 解决方案:让layer的弹出层居中显示 一.问题描述 用layer做操作结果 ...

  5. Redis+EJB实现缓存(一)

        上篇博客大概的对Redis做了一个主要的了解.由于刚刚接触自己也不太明确.所以上篇博客写的乱七八糟的.这篇由于项目须要,学习了一下Redis和EJB集成. 如今脑子相对照较清晰了一些. 实现思 ...

  6. EF(Linq)框架使用过程中的小技巧汇总 dbfunctions

    这篇博客总结本人在实际项目中遇到的一些关于EF或者Linq的问题,作为以后复习的笔记或者供后来人参考(遇到问题便更新). 目录 技巧1: DbFunctions.TruncateTime()的使用 技 ...

  7. hdoj 1875 畅通project再续【最小生成树 kruskal &amp;&amp; prim】

    畅通project再续 Problem Description 相信大家都听说一个"百岛湖"的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其它的小岛时都要通过划小船来实现. ...

  8. goroutine pool,WaitGroup,chan 示例

    服务端高并发编程经常需要写很多goroutine来服务每一个连接,如何正确使用goroutine池是又拍云的工程师们需要考虑的问题,今天这篇文章,分享给同样需要使用go语言的小伙伴们. 文/陶克路 本 ...

  9. poj 1789 Truck History 解题报告

    题目链接:http://poj.org/problem?id=1789 题目意思:给出 N 行,每行7个字符你,统计所有的 行 与 行 之间的差值(就是相同位置下字母不相同),一个位置不相同就为1,依 ...

  10. [Selenium] Android 中旋转屏幕,触摸,滚动

    package com.learingselenium.android; import junit.framework.TestCase import org.openqa.selenium.Rota ...