首先,给一个单调不降序列的第i位+i,这样就变成了单调上升序列,设原来数据范围是(l,r),改过之后变成了(l+1,r+n)

在m个数里选长为n的一个单调上升序列的方案数为\( C_m^n \),也就是随便选n个数只能组成惟一的单调上升序列,所以要求的式子就变成了

\[\sum_{i=1}^{n}C_{r-l+i}^{i}
\]

这样看着比较难受,我们把它改成

\[\sum_{i=1}^{n}C_{r-l+i}^{r-l}
\]

我们在开头加一个\( C_{r-l+1}^{r-l+1} \),这样根据\( C_nm=C_{n-1}m+C_{n-1}^{m-1} \),他就可以和式子的第一项\( C_{r-l+1}^{r-l} \)合并为\( C_{r-l+2}^{r-l+1} \),然后这个又可以可第二个合并,以此类推,最后这个式子就会合并为\( C_{r-l+n+1}^{r-l+1} \),然后再减掉\( C_{r-l+1}^{r-l+1}=1 \)即可

然后用lucas求这个组合数即可

#include<iostream>
#include<cstdio>
using namespace std;
const long long N=1000010,mod=1e6+3;
long long T,n,l,r,fac[N],inv[N];
long long ksm(long long a,long long b)
{
long long r=1;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
long long C(long long n,long long m)
{
if(m>n)
return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
long long lucas(long long n,long long m)
{
if(m>n)
return 0;
return n<mod?C(n,m):lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}
int main()
{
scanf("%lld",&T);
fac[0]=1,inv[0]=1;
for(int i=1;i<mod;i++)
fac[i]=fac[i-1]*i%mod;
inv[mod-1]=ksm(fac[mod-1],mod-2);
for(int i=mod-2;i>=1;i--)
inv[i]=inv[i+1]*(i+1)%mod;
while(T--)
{
scanf("%lld%lld%lld",&n,&l,&r);
printf("%lld\n",(lucas(r-l+n+1,r-l+1)-1+mod)%mod);
}
return 0;
}

bzoj 4403: 序列统计【lucas+组合数学】的更多相关文章

  1. Bzoj 4403: 序列统计 Lucas定理,组合数学,数论

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 328  Solved: 162[Submit][Status][Discuss] ...

  2. BZOJ 4403: 序列统计 数学 lucas

    4403: 序列统计 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4403 Description 给定三个正整数N.L和R,统计长度在 ...

  3. bzoj 4403 序列统计 卢卡斯定理

    4403:序列统计 Time Limit: 3 Sec  Memory Limit: 128 MB Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调 ...

  4. BZOJ 4403 序列统计(Lucas)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4403 [题目大意] 给定三个正整数N.L和R,统计长度在1到N之间, 元素大小都在L到 ...

  5. [BZOJ 4403]序列统计

    Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取模的结果. Input 输入第一行包含一个整数T,表示数据组 ...

  6. bzoj 4403 序列统计——转化成组合数的思路

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4403 先说说自己的想法吧. 设f[ i ][ j ]表示当前在倒数第 i 个位置,当前和后面 ...

  7. 【BZOJ 4403】 4403: 序列统计 (卢卡斯定理)

    4403: 序列统计 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 653  Solved: 320 Description 给定三个正整数N.L和R, ...

  8. 【BZOJ4403】序列统计(组合数学,卢卡斯定理)

    [BZOJ4403]序列统计(组合数学,卢卡斯定理) 题面 Description 给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案对10^6+3取 ...

  9. BZOJ4403 序列统计—Lucas你好

    绝对是全网写的最详细的一篇题解  题目:序列统计 代码难度:简单 思维难度:提高+-省选 讲下题面:给定三个正整数N.L和R,统计长度在1到N之间,元素大小都在L到R之间的单调不降序列的数量.输出答案 ...

随机推荐

  1. 简洁的ios小界面

    下午写写了个小东西小界面 有须要的能够直接拿过来用 ,简洁,挺好看,自我感觉: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdTAxMDEyMzIwOA= ...

  2. 设计模式入门之原型模式Prototype

    //原型模式:用原型实例指定创建对象的种类,并通过拷贝这些原型创建新的对象 //简单来说,当进行面向接口编程时,假设须要复制这一接口对象时.因为不知道他的详细类型并且不能实例化一个接口 //这时就须要 ...

  3. iOS知识点全梳理-b

    感谢分享 原文链接:http://www.jianshu.com/p/5d2163640e26 序言 目前形势,参加到iOS队伍的人是越来越多,甚至已经到供过于求了.今年,找过工作人可能会更深刻地体会 ...

  4. 【前端】怎样成长为一名优秀的前端project师---

    浅谈本人的经验.也算是与大家交流吧,本人眼下也是从事前端的工作,时间并不长,说的不好,请见谅. 首先,前端project师必须得掌握HTML.CSS和JavaScript. 仅仅懂当中一个或两个还不行 ...

  5. VC++ 学习笔记(四):停止还是暂停这个系列

    我已经很久没有更新这个话题了,原因是多方面的,比如比较忙,比如我参与的项目不使用C++.最近因为需要在C#的客户端中调用第三方的C++API,又想起了这个话题.在跟公司里的C++方面专家聊过之后,我有 ...

  6. Visual Studio自动生成文件版本信息

    一.     前言 通常,要控制输出文件的版本信息,只需要手动修改资源rc文件中的Version,即可在输出文件的文件属性里查看到对应的版本信息.如下图:    但是,版本号是会随时都更新的,每次bu ...

  7. linux下的文件和文件夹的权限问题

    1 文件和文件夹的权限 文件和文件夹的权限设置的根本目的是控制人对它们的访问. 2 用户分类 本文件的拥有者.本文件所属的grou.其它用户. 3 也就是说 在读写文件或者文件夹时,要看看自己是属于哪 ...

  8. 微信小程序存放视频文件到阿里云用到算法js脚本文件

           peterhuang007/weixinFileToaliyun: 微信小程序存放视频文件到阿里云用到算法js脚本文件 https://github.com/peterhuang007/ ...

  9. jquery 选择器(selector)和事件(events)

    页面加载完成后开始运行do stuff when DOM is ready 中的语句! $(document).ready(function() {       // do stuff when DO ...

  10. eclipse输入提示 设置