题意:

给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大

分析:

这道题其实并不是很好想, 因为价值和花费不是在同一样东西, 价值是点, 花费是边。

但回到我们要求的问题上, 我们要找出一个最优比率的环, 那么其实每个点只会经过一次, 是一个单独的环, 所以我们可以把价值也视为边的一部分。

参考这篇博客http://blog.csdn.net/gengmingrui/article/details/47443705

用01分数划分的套路构造出

然后二分这个L, 如果这个L值跑spfa最长路存在正权环路, 说明了L太小, 存在更优的F(L), 没有正权环路, 说明L太大, 一直二分即可有答案。

这题的坑就是没有特判, 输出3个小数位一直在找错。

SPFA

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cstring>
#include <cmath>
#include <iomanip>
#define rep(i,a,b) for(int i = a; i < b;i++)
#define _rep(i,a,b) for(int i = a; i <= b;i++)
using namespace std;
const double eps = 1e-;
const double inf = 1e9 + ;
const int maxn = + ;
int n , m;
double val[maxn];
struct edge{
int to;
double d;
edge(int _to, double _d): to(_to), d(_d){}
};
vector<edge> G[maxn];
bool spfa(double L){ //因为答案最终一定是一个环,所以我们将每一条边的收益规定为其终点的收益,这样一个环上所有的花费和收益都能够被正确的统计。
double dis[maxn];
bool vis[maxn];
int enter_cnt[maxn];//记录入队次数
fill(dis, dis+maxn, -inf);//求最长路初始化为 负无穷
memset(vis, , sizeof(vis));
memset(enter_cnt, , sizeof(enter_cnt));
queue<int> q;
vis[] = ;
dis[] = ;
enter_cnt[]++;//第一次进队也要记录
q.push(); while(!q.empty()){
int u = q.front();
for(int i = ; i < G[u].size(); i++){ //求一个最长路的正权环路
int v = G[u][i].to;
double d = G[u][i].d;
double w = val[v] - L * d;
if(dis[v] < dis[u] + w){
dis[v] = dis[u] + w;
if(!vis[v]){
if(++enter_cnt[v] >= n) return true;
vis[v] = ;
q.push(v);
}
}
}
vis[u] = ;
q.pop();
}
return false;
}
int main(){
// freopen("1.txt","r", stdin);
while(cin >> n >> m){
_rep(i,,n) cin >> val[i];
rep(i,,m){
int u, v, d;
cin >> u >> v >> d;
G[u].push_back(edge(v,d));
}
double l = , r = 10000.0;
while(abs(r - l) > eps){
double mid = (l+r)/;
if(spfa(mid)) //如果有环路, L太小了
{
l = mid;
}
else r = mid;
}
cout.setf(ios::fixed);
cout << setprecision() << l << "\n";
_rep(i,,n) G[i].clear();
}
return ;
}

Bellman

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <cstring>
#include <cmath>
#include <iomanip>
#define rep(i,a,b) for(int i = a; i < b;i++)
#define _rep(i,a,b) for(int i = a; i <= b;i++)
using namespace std;
const double eps = 1e-;
const double inf = 1e9 + ;
const int maxn = + ;
int n , m;
double val[maxn];
struct edge{
int to , d;
edge(int _to, int _d): to(_to), d(_d){}
};
vector<edge> G[maxn];
bool Bellman(double L){ //因为答案最终一定是一个环,所以我们将每一条边的收益规定为其终点的收益,这样一个环上所有的花费和收益都能够被正确的统计。
double dis[maxn];
fill(dis, dis+maxn, -inf); for(int times = ; times < n - ; times++) //进行n - 1轮松弛
{
int flag = ;
for(int u = ; u <= n; u++){
for(int i = ; i < G[u].size(); i++){
int v = G[u][i].to;
double d = G[u][i].d;
double w = val[v] - L * d;
if(dis[v] < dis[u] + w){
flag = ;
dis[v] = dis[u] + w;
}
}
}
if(!flag) return false;//如果n-1次松弛前已经没有松弛, 肯定不存在正权环路
}
for(int u = ; u <= n; u++){
for(int i = ; i < G[u].size(); i++){
int v = G[u][i].to;
double d = G[u][i].d;
double w = val[v] - L * d;
if(dis[v] < dis[u] + w){
return true;
}
}
}
return false;
}
int main(){
// freopen("1.txt","r", stdin);
while(cin >> n >> m){
_rep(i,,n) cin >> val[i];
rep(i,,m){
int u, v, d;
cin >> u >> v >> d;
G[u].push_back(edge(v,d));
}
double l = , r = 10000.0;
while(abs(l - r) > eps){
double mid = (l+r)/;
if(Bellman(mid)) //如果有环路, L太小了
{
l = mid;
}
else r = mid;
}
cout.setf(ios::fixed);
cout << setprecision() << l << "\n";
_rep(i,,n) G[i].clear();
}
return ;
}

POJ 3621 Sightseeing Cows (最优比率环 01分数划分)的更多相关文章

  1. POJ 3621 Sightseeing Cows [最优比率环]

    感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...

  2. POJ3621 Sightseeing Cows 最优比率环 二分法

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  3. POJ3621 Sightseeing Cows(最优比率环)

    题目链接:id=3621">http://poj.org/problem?id=3621 在一个有向图中选一个环,使得环上的点权和除以边权和最大.求这个比值. 经典的分数规划问题,我认 ...

  4. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  5. [POJ 3621] Sightseeing Cows

    [题目链接] http://poj.org/problem?id=3621 [算法] 01分数规划(最优比率环) [代码] #include <algorithm> #include &l ...

  6. POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10306   Accepted: 3519 ...

  7. POJ 3621 Sightseeing Cows (bellman-Ford + 01分数规划)

    题意:给出 n 个点 m 条有向边,要求选出一个环,使得这上面 点权和/边权和 最大. 析:同样转成是01分数规划的形式,F / L 要这个值最大,也就是 G(r) = F - L * r 这个值为0 ...

  8. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

  9. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

随机推荐

  1. hbase表结构 + hbase集群架构及表存储机制

    本博文的主要内容有    .hbase读取数据过程 .HBase表结构 .附带PPT http://hbase.apache.org/ 读写的时候,就需要用hbase了,换句话说,就是读写的时候.需要 ...

  2. 2015 ACM-ICPC国际大学生程序设计竞赛北京赛区网络赛 1002 Mission Impossible 6

    题目链接: #1228 : Mission Impossible 6 解题思路: 认真读题,细心模拟,注意细节,就没有什么咯!写这个题解就是想记录一下rope的用法,以后忘记方便复习. rope(块状 ...

  3. 关于MyBatis的两种写法

    刚接触MyBatis是在Jike的视频中学习的,但是之后又发现和项目中的MyBatis的用法不太一致.上网找了好多资料,发现网上的教程分为两种写法: 第一种,是jike视频中的写法,写好map.xml ...

  4. 141 Linked List Cycle 环形链表

    给定一个链表,判断链表中否有环.补充:你是否可以不用额外空间解决此题?详见:https://leetcode.com/problems/linked-list-cycle/description/ J ...

  5. C. Tennis Championship dp递推 || 找规律

    http://codeforces.com/contest/735/problem/C C. Tennis Championship time limit per test 2 seconds mem ...

  6. 机器学习概念之特征处理(Feature processing)

    不多说,直接上干货! 肯定也有不少博友,跟我一样,刚开始接触的时候,会对这三个概念混淆. 以下是,特征处理.特征提取.特征转换和特征选择的区别! 特征处理主要包含三个方面:特征提取.特征转换和特征选择 ...

  7. ios项目中引用其他开源项目

    1. 将开源项目的.xcodeproj拖入项目frameworks 2. Build Phases下 Links Binary With Libraries 引入.a文件.Target Depende ...

  8. Java 利用FTP上传,下载文件,遍历文件目录

    Java实现FTP上传下载文件的工具包有很多,这里我采用Java自带的API,实现FTP上传下载文件.另外JDK1.7以前的版本与其之后版本的API有了较大的改变了. 例如: JDK1.7之前 JDK ...

  9. 第17周翻译:SQL Server中的事务日志管理的阶梯:第5级:在完全恢复模式下管理日志

    来源:http://www.sqlservercentral.com/articles/Stairway+Series/73785/ 作者:Tony Davis, 2012/01/27 翻译:刘琼滨. ...

  10. 洛谷 P1351 联合权值

    题目描述 无向连通图G 有n 个点,n - 1 条边.点从1 到n 依次编号,编号为 i 的点的权值为W i ,每条边的长度均为1 .图上两点( u , v ) 的距离定义为u 点到v 点的最短距离. ...