CReLU激活函数
转载自CSDN, CReLU激活函数
CReLU 一种改进 ReLU 激活函数的文章,来自ICML2016.
1. 背景介绍
整个文章的出发点来自于下图的统计现象:

为了看懂上图。
(1)首先介绍一下余弦相似度(cos距离)的概念

cos距离的取值范围是 [-1,+1],距离越接近-1,表示两个向量的方向越相反,即呈负相关关系。
(2)再来介绍一下 pair filter的定义
一个卷积层有 \(j=1, \cdots, n\) 个卷积核(filter), 一个卷积核 \(ϕ_i\) 对应的 pairing filter 定义为
\[ϕ_i = argmin_{ϕ_j}cos<ϕ_i, ϕ_j>\]
即从所有卷积核中选择一个cos相似度最小的卷积核。
我们再回头看上图。 对所有卷积核寻找其 pair filter,并计算cos相似度得到蓝色的统计直方图。 红色的曲线,是假设随机高斯分布生成的卷积核得到的相似度统计。
现象:网络的前部,参数的分布有更强的负相关性(类似于正负对立)。随着网络变深,这种负相关性逐步减弱。
结论:网络的前部,网络倾向于同时捕获正负相位的信息,但ReLU会抹掉负响应。 这造成了卷积核会存在冗余。
2. CReLU
CReLU的定义很简单:
\[\text{CReLU(x)= Concat[ ReLU(x), ReLU(−x) ]}\]
输出维度会自动加倍。 比如
\[ [−3, 1] \rightarrow \begin{matrix}
[[0&1], \\ [3&0]] \\
\end{matrix}\]
在网络中的实现也很简单,甚至不用修改代码(通过scale层取反再经过一次ReLU)

CReLU激活函数的更多相关文章
- 激活函数(relu,prelu,elu,+BN)对比on cifar10
激活函数(relu,prelu,elu,+BN)对比on cifar10 可参考上一篇: 激活函数 ReLU.LReLU.PReLU.CReLU.ELU.SELU 的定义和区别 一.理论基础 ...
- Difference between ReLU、LReLU、PReLU、CReLU、ELU、SELU
激活函数 ReLU.LReLU.PReLU.CReLU.ELU.SELU 的定义和区别 ReLU tensorflow中:tf.nn.relu(features, name=None) LReLU ...
- 浅谈深度学习中的激活函数 - The Activation Function in Deep Learning
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激活 ...
- The Activation Function in Deep Learning 浅谈深度学习中的激活函数
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激 ...
- 神经网络中的激活函数——加入一些非线性的激活函数,整个网络中就引入了非线性部分,sigmoid 和 tanh作为激活函数的话,一定要注意一定要对 input 进行归一话,但是 ReLU 并不需要输入归一化
1 什么是激活函数? 激活函数,并不是去激活什么,而是指如何把“激活的神经元的特征”通过函数把特征保留并映射出来(保留特征,去除一些数据中是的冗余),这是神经网络能解决非线性问题关键. 目前知道的激活 ...
- ReLU、LReLU、PReLU、CReLU、ELU、SELU
ReLU.LReLU.PReLU.CReLU.ELU.SELU 2018年01月22日 22:25:34 luxiaohai的学习专栏 阅读数 28218更多 分类专栏: 深度学习 版权声明:本文 ...
- ReLu(Rectified Linear Units)激活函数
论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) 起源:传统激活函数.脑神经元激活频率研究.稀疏激活性 传统Sigmoid系激活函数 传 ...
- 深度神经网络(DNN)损失函数和激活函数的选择
在深度神经网络(DNN)反向传播算法(BP)中,我们对DNN的前向反向传播算法的使用做了总结.里面使用的损失函数是均方差,而激活函数是Sigmoid.实际上DNN可以使用的损失函数和激活函数不少.这些 ...
- tensorflow Relu激活函数
1.Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x). 2.tensorflow实现 #!/usr/bin/env pyth ...
随机推荐
- Svn 安装、配置、使用指南
Svn 安装.配置.使用指南 Svn 是 Subversion 的简称,是一个开放源代码的版本控制系统,它采用了分支管理系统. 1. 安装配置 1.1. 安装 svn 1.2. 创建 svn 仓库 1 ...
- vue 2.0 + ElementUI构建树形表格
解决: 本来想在网上博客找一找解决方法,奈何百度到的结果都不尽人意,思维逻辑不清,步骤复杂,代码混乱,找了半天也没找到一个满意的,所以干脆就自己动手写一个 思路: table需要的数据是array,所 ...
- Windows 10 安装过程中,在自定义登录页面进入审核模式
按ctrl-f3进入审核模式 https://msdn.microsoft.com/zh-cn/windows/hardware/commercialize/manufacture/desktop/b ...
- offsetof(s,m)解析
https://www.cnblogs.com/jingzhishen/p/3696293.html sizeof()用法汇总 sizeof()功能:计算数据空间的字节数1.与strlen()比较 ...
- docker(五) 使用Docker Registry搭建镜像私服
1.创建私服 docker run -d --name registry -v /opt/data/registry:/var/lib/registry -p 5000:5000 registry - ...
- [转帖]Windows 10 部分早期版本已完全停止技术支持服务
Windows 10 部分早期版本已完全停止技术支持服务 2019-4-12 01:27| 发布者: cjy__05| 查看: 10186| 评论: 47|来自: pcbeta 收藏分享 转帖来源:h ...
- webpack加载postcss,以及autoprefixer的loader
webpack2.0加载postcssloader以及autoprefixer实现自动根据兼容性的需求给css加私有前缀的功能,给开发带来便利, 下面是我的配置信息,亲测有效: 1.webpack.c ...
- Python——Django-模板
一.模板的种类 1.变量 {{变量名}} 2.语句类{% %} 2.1 {%for i in booklist%} {{i}} {%endfor%} 2.2 {%if 10>5%} {%else ...
- js和jquery设置css样式的几种方法
一.js设置样式的方法 1. 直接设置style的属性 某些情况用这个设置 !important值无效 element.style.height = '50px'; 2. 直接设置属性(只能用于某些 ...
- Floyd算法——计算图中任意两点之间的最短路径
百度百科定义:传送门 一.floyd算法 说实话这个算法是用来求多源最短路径的算法. 算法原理: 1,从任意一条单边路径开始.所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大. 2,对 ...