http://poj.org/problem?id=1845

题目

Time Limit: 1000MS   Memory Limit: 30000K

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.

15 modulo 9901 is 15 (that should be output).

题解

筛素数后试除不行,因为空间限制

直接试除

得到了$1\sim \sqrt{A}$的素因子,可以肯定剩下的那个一定是素数,就像之前的Safe Upperbound一样

占坑= =

AC代码

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<set>
#include<cassert> #define REP(r,x,y) for(register int r=(x); r<(y); r++)
#define REPE(r,x,y) for(register int r=(x); r<=(y); r++)
#ifdef sahdsg
#define DBG(...) printf(__VA_ARGS__)
#else
#define DBG(...) (void)0
#endif using namespace std;
typedef long long LL;
typedef pair<LL, LL> pll;
typedef pair<int, int> pii;
#define MO 9901
#define MAXN 50000007
inline int qpow(int a, int b) {
a%=MO;
int ans=1;
for(;b;b>>=1) {
if(b&1) ans=(LL)ans*a%MO;
a=(LL)a*a%MO;
}
return ans;
}
int sum(int a, int b) {
if(a==0) return 0; if(b==0) return 1;
if(b&1) {
return (LL)sum(a,b/2)*(1+qpow(a,b/2+1))%MO;
} else {
return ((LL)sum(a,b/2-1)*(1+qpow(a,b/2))%MO+qpow(a,b))%MO;
}
}
int a,b;
int main() {
scanf("%d%d", &a, &b);
if(!a) {puts("0"); return 0;}
LL ans=1;
for(int i=2;i*i<=a;i++) {
int cnt=0;
if(!(a%i)) {
a/=i, cnt++;
while(!(a%i)) {
a/=i,cnt++;
}
(ans*=sum(i,cnt*b))%=MO;
}
}
if(a!=1) (ans*=sum(a,b))%=MO;
printf("%lld\n", ans);
return 0;
}

Sumdiv POJ 1845的更多相关文章

  1. 洛谷 P1593 因子和 || Sumdiv POJ - 1845

    以下弃用 这是一道一样的题(poj1845)的数据 没错,所有宣称直接用逆元/快速幂+费马小定理可做的,都会被hack掉(包括大量题解及AC代码) 什么原因呢?只是因为此题的模数太小了...虽然990 ...

  2. Sumdiv POJ - 1845 (逆元/分治)

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m ...

  3. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  4. 【POJ 1845】 Sumdiv (整数唯分+约数和公式+二分等比数列前n项和+同余)

    [POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分  整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘 ...

  5. poj 1845 【数论:逆元,二分(乘法),拓展欧几里得,费马小定理】

    POJ 1845 题意不说了,网上一大堆.此题做了一天,必须要整理一下了. 刚开始用费马小定理做,WA.(poj敢说我代码WA???)(以下代码其实都不严谨,按照数据要求A是可以等于0的,那么结果自然 ...

  6. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  7. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  8. POJ 1845 Sumdiv#质因数分解+二分

    题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...

  9. poj 1845 Sumdiv (等比求和+逆元)

    题目链接:http://poj.org/problem?id=1845 题目大意:给出两个自然数a,b,求a^b的所有自然数因子的和模上9901 (0 <= a,b <= 50000000 ...

随机推荐

  1. es6 Symbol类型

    es6 新增了一个原始类型Symbol,代表独一无二的数据 javascript 原来有6中基本类型, Boolean ,String ,Object,Number, null , undefined ...

  2. REST风格下如何放行静态资源

    在配置DispatcherServlet(前端控制器)时,如果把拦截路径配置成rest风格(即斜杠/),则会将静态资源也一并拦截(比如.css .js ,jpg)为了避免这个情况,可以把拦截路径设置成 ...

  3. CSS Grid 布局完全指南(图解 Grid 详细教程)

    CSS Grid 布局是 CSS 中最强大的布局系统.与 flexbox 的一维布局系统不同,CSS Grid 布局是一个二维布局系统,也就意味着它可以同时处理列和行.通过将 CSS 规则应用于 父元 ...

  4. JQuery显示,隐藏和淡入淡出效果

    为了把JQuery搞熟悉,看着菜鸟教程,一个一个例子打,边看边记,算是一晚上的一个小总结吧.加油,我很本但是我很勤奋啊.系统的了解它,就要花时间咯. <!DOCTYPE html> < ...

  5. Windows应急响应常识

    Windows 应急响应 常见事件ID 1102 清理审计日志 4624 账号登陆成功 4625 账号登陆失败 4672 授予特殊权限 4720 创建用户 4726 删除用户 4728 将成员添加到启 ...

  6. Python第八天 模块 包 全局变量和内置变量__name__ Python path

    Python第八天  模块   包   全局变量和内置变量__name__    Python path 目录 Pycharm使用技巧(转载) Python第一天  安装  shell  文件 Pyt ...

  7. LeetCode算法题-Degree of an Array(Java实现)

    这是悦乐书的第294次更新,第312篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第162题(顺位题号是697).给定一个由正整数组成的非空数组,该数组的度数被定义为任意 ...

  8. 我的第一个python web开发框架(28)——定制ORM(四)

    在数据库操作时,新增记录也是必不可少的,接下来我们应用字典的特性来组合sql语句 先上产品新增接口代码 @post('/api/product/') def callback(): "&qu ...

  9. 算法"新"名词

    这个“新”是对于自己而言. 最近几天接触到很多新的名词,如: 回溯法(backtracking):以前知道,但很少用 动态规划(dynamic programming):序列型.矩阵型.区间型.背包等 ...

  10. Postman安装及入门教程

    安装 本文只是基于 Chrome 浏览器的扩展插件来进行的安装,并非单独应用程序. 首先,你要台电脑,其次,安装有 Chrome 浏览器,那你接着往下看吧. 1. 官网安装(别看) 打开官网,http ...