目标:将fruit表中的一部分数据,通过MR迁入到fruit_mr表中

Step1、构建ReadFruitMapper类,用于读取fruit表中的数据

package com.z.hbase_mr;

import java.io.IOException;

import org.apache.hadoop.hbase.Cell;

import org.apache.hadoop.hbase.CellUtil;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.client.Result;

import org.apache.hadoop.hbase.io.ImmutableBytesWritable;

import org.apache.hadoop.hbase.mapreduce.TableMapper;

import org.apache.hadoop.hbase.util.Bytes;

public class ReadFruitMapper extends TableMapper<ImmutableBytesWritable, Put> {

@Override

protected void map(ImmutableBytesWritable key, Result value, Context context)

throws IOException, InterruptedException {

//将fruit的name和color提取出来,相当于将每一行数据读取出来放入到Put对象中。

Put put = new Put(key.get());

//遍历添加column行

for(Cell cell: value.rawCells()){

//添加/克隆列族:info

if("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))){

//添加/克隆列:name

if("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){

//将该列cell加入到put对象中

put.add(cell);

//添加/克隆列:color

}else if("color".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){

//向该列cell加入到put对象中

put.add(cell);

}

}

}

//将从fruit读取到的每行数据写入到context中作为map的输出

context.write(key, put);

}

}

Step2、构建WriteFruitMRReducer类,用于将读取到的fruit表中的数据写入到fruit_mr表中

package com.z.hbase_mr;

import java.io.IOException;

import org.apache.hadoop.hbase.client.Put;

import org.apache.hadoop.hbase.io.ImmutableBytesWritable;

import org.apache.hadoop.hbase.mapreduce.TableReducer;

import org.apache.hadoop.io.NullWritable;

public class WriteFruitMRReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> {

@Override

protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context)

throws IOException, InterruptedException {

//读出来的每一行数据写入到fruit_mr表中

for(Put put: values){

context.write(NullWritable.get(), put);

}

}

}

Step3、构建Fruit2FruitMRJob extends Configured implements Tool,用于组装运行Job任务

//组装Job

public int run(String[] args) throws Exception {

//得到Configuration

Configuration conf = this.getConf();

//创建Job任务

Job job = Job.getInstance(conf, this.getClass().getSimpleName());

job.setJarByClass(Fruit2FruitMRJob.class);

//配置Job

Scan scan = new Scan();

scan.setCacheBlocks(false);

scan.setCaching(500);

//设置Mapper,注意导入的是mapreduce包下的,不是mapred包下的,后者是老版本

TableMapReduceUtil.initTableMapperJob(

"fruit", //数据源的表名

scan, //scan扫描控制器

ReadFruitMapper.class,//设置Mapper类

ImmutableBytesWritable.class,//设置Mapper输出key类型

Put.class,//设置Mapper输出value值类型

job//设置给哪个JOB

);

//设置Reducer

TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRReducer.class, job);

//设置Reduce数量,最少1个

job.setNumReduceTasks(1);

boolean isSuccess = job.waitForCompletion(true);

if(!isSuccess){

throw new IOException("Job running with error");

}

return isSuccess ? 0 : 1;

}

Step4、主函数中调用运行该Job任务

public static void main( String[] args ) throws Exception{

Configuration conf = HBaseConfiguration.create();

int status = ToolRunner.run(conf, new Fruit2FruitMRJob(), args);

System.exit(status);

}

HBase表数据的转移之使用自定义MapReduce的更多相关文章

  1. 数据分页处理系列之二:HBase表数据分页处理

      HBase是Hadoop大数据生态技术圈中的一项关键技术,是一种用于分布式存储大数据的列式数据库,关于HBase更加详细的介绍和技术细节,朋友们可以在网络上进行搜寻,笔者本人在接下来的日子里也会写 ...

  2. HBase(三): Azure HDInsigt HBase表数据导入本地HBase

    目录: hdfs 命令操作本地 hbase Azure HDInsight HBase表数据导入本地 hbase hdfs命令操作本地hbase: 参见  HDP2.4安装(五):集群及组件安装 , ...

  3. 一种HBase表数据迁移方法的优化

    1.背景调研: 目前存在的hbase数据迁移主要分如下几类: 根据上图,可以看出: 其实主要分为两种方式:(1)hadoop层:因为hbase底层是基于hdfs存储的,所以可以通过把hdfs上的数据拷 ...

  4. HBase表数据分页处理

    HBase表数据分页处理 HBase是Hadoop大数据生态技术圈中的一项关键技术,是一种用于分布式存储大数据的列式数据库,关于HBase更加详细的介绍和技术细节,朋友们可以在网络上进行搜寻,笔者本人 ...

  5. spark读HFile对hbase表数据进行分析

    要求:计算hasgj表,计算每天新增mac数量. 因为spark直接扫描hbase表,对hbase集群访问量太大,给集群造成压力,这里考虑用spark读取HFile进行数据分析. 1.建立hasgj表 ...

  6. HBase自定义MapReduce

    HBase表数据的转移 在Hadoop阶段,我们编写的MR任务分别进程了Mapper和Reducer两个类,而在HBase中我们需要继承的是TableMapper和TableReducer两个类. 目 ...

  7. hbase操作(shell 命令,如建表,清空表,增删改查)以及 hbase表存储结构和原理

    两篇讲的不错文章 http://www.cnblogs.com/nexiyi/p/hbase_shell.html http://blog.csdn.net/u010967382/article/de ...

  8. HBase学习——3.HBase表设计

    1.建表高级属性 建表过程中常用的shell命令 1.1 BLOOMFILTER 默认是 NONE 是否使用布隆过虑及使用何种方式,布隆过滤可以每列族单独启用 使用HColumnDescriptor. ...

  9. 大数据量场景下storm自定义分组与Hbase预分区完美结合大幅度节省内存空间

    前言:在系统中向hbase中插入数据时,常常通过设置region的预分区来防止大数据量插入的热点问题,提高数据插入的效率,同时可以减少当数据猛增时由于Region split带来的资源消耗.大量的预分 ...

随机推荐

  1. MongoDB基本信息

    一.MongoDB简介 来源:在2007年,由纽约一个叫10gen的创业团队开发,公司现在叫做MongoDB Inc,最初被开发为PAAS(平台即服务). 数据库类型:基于分布式文件存储的数据库.由C ...

  2. Cpython解释器GIL-多线程执行流程

  3. linux配制DNS服务器基本能功能

    1.环境 Centos 6.5 bind 关闭防火墙和SELINUX 2.安装bind服务软件 yum -y install bind 3.配制主配制文件/etc/name.conf options ...

  4. linux目录详细列表

    详细列表 目录 说明 备注 bin 存放普通用户可执行的指令 即使在单用户模式下也能够执行处理 boot 开机引导目录 包括Linux内核文件与开机所需要的文件 dev 设备目录 所有的硬件设备及周边 ...

  5. 通过安全网闸访问MongoDB

    前景描述: 在10.235的内网3台虚拟机上部署了mongodb的副本集,同网段中的虚拟机上部署的Springboot工程可正常访问.spring配置文件: data: mongodb: uri: m ...

  6. Saiku资源帖

    一.精选 1.李秋 随笔分类 - pentaho 二.概述 1.Saiku + Kylin 多维分析平台探索 三.Saiku+Kylin 1.使用Saiku+Kylin构建多维分析OLAP平台 2.使 ...

  7. 2018-2019-2 《网络对抗技术》Exp2 后门原理与应用 20165215

    目录 实验内容 基础问题回答 常用后门工具 Netcat windows 获取 linux 的shell linux 获取 winsdows 的shell 使用nc传输数据 使用nc传文件 Socat ...

  8. 高校表白APP-冲刺第一天

    今天我们开了第一次会议, 一.任务: 今日任务布局登录页面,注册页面,修改密码界面 明日任务完成基本的登录页面框架 二.遇到的困难: 布局文件里的一些标签,用法不清楚,页面跳转都得学习.

  9. 一款非常好用的 Windows 服务开发框架,开源项目Topshelf

    Topshelf是一个开发windows服务的比较好的框架之一,以下演示如何开发Topshelf服务. 1.首先打开你的vs.新建一个TopshelfStudy控制台程序,如下图所示: 这是我用vs2 ...

  10. ametuer technology

    1. eclipse build output/ .s37 not big enough (about 1.23M) Brose Setting: Build command must be BUIL ...