前言

Spaly是基于二叉查找树实现的,

什么是二叉查找树呢?就是一棵树呗:joy: ,但是这棵树满足性质—一个节点的左孩子一定比它小,右孩子一定比它大

比如说

这就是一棵最基本二叉查找树

对于每次插入,它的期望复杂度大约是$logn$级别的,但是存在极端情况,比如9999999 9999998 9999997.....1这种数据,会直接被卡成$n^2$

在这种情况下,平衡树出现了!

Splay简介

Splay是平衡树的一种,中文名为伸展树,由丹尼尔·斯立特Daniel Sleator和罗伯特·恩卓·塔扬Robert Endre Tarjan在1985年发明的(mmp怎么又是tarjan)

它的主要思想是:对于查找频率较高的节点,使其处于离根节点相对较近的节点

这样就可以保证了查找的效率

那么现在问题来了:

  • 什么样的点是查找频率高的点?

这个玩意儿确实不好统计,但是你可以认为每次被查找的点查找频率相对较高,说白了就是你把每次查找到的点搬到根节点去

当然你也可以每次查找之后随机一个点作为根,于是Treaplay这种数据结构就诞生啦

  •  怎么实现把节点搬到根这种操作?

这也是Splay这种数据结构所要实现的功能,接下来我们详细的介绍一下

Splay基本操作

rotate

首先考虑一下,我们要把一个点挪到根,那我们首先要知道怎么让一个点挪到它的父节点

情况1

当X是Y的左孩子

这时候如果我们让X成为Y的父亲,只会影响到3个点的关系

B与X,X与Y,X与R

根据二叉排序树的性质

B会成为Y的左儿子

Y会成为X的右儿子

X会成为R的儿子,具体是什么儿子,这个要看Y是R的啥儿子

经过变换之后,大概是这样

情况2

当X是Y的右孩子

本质上和上面是一样的,

变换后为

这两种代码单独实现都比较简单,我就不写了(实际上是我懒)

但是这两种旋转情况很类似,第二种情况实际就是把第一种情况的X,Y换了换位置

我们考虑一下能不能将这两种情况合并起来实现呢?

答案是肯定的

首先我们要获取到每一个节点它是它爸爸的哪个孩子,可以这么写

bool ident(int x) {
return tree[tree[x].fa].ch[] == x ? : ;
}

如果是左孩子的话会返回0,右孩子会返回1

那么我们不难得到R,Y,X这三个节点的信息

int Y = tree[x].fa;
int R = tree[Y].fa;
int Yson = ident(x); //x是y的哪个孩子
int Rson = ident(Y);

B的情况我们可以根据X的情况推算出来,根据^运算的性质,0^1=1,1^1=0,2^1=3,3^1=2,而且B相对于X的位置一定是与X相对于Y的位置是相反的

(否则在旋转的过程中不会对B产生影响)

int B = tree[x].ch[Yson ^ ];

然后我们考虑连接的过程

根据上面的图,不难得到

B成为Y的哪个儿子与X是Y的哪个儿子是一样的

Y成为X的哪个儿子与X是Y的哪个儿子相反

X成为R的哪个儿子与Y是R的哪个儿子相同

connect(B, Y, Yson);
connect(Y, x, Yson ^ );
connect(x, R, Rson);

connect函数这么写,挺显然的

void connect(int x, int fa, int how) { //x节点将成为fa节点的how孩子
tree[x].fa = fa;
tree[fa].ch[how] = x;
}

单旋函数就是这样了,利用这个函数就可以实现把一个节点搬到它的爸爸那儿了,

Splay

Splay(x,to)是实现把x节点搬到to节点

最简单的办法,对于x这个节点,每次上旋直到to

但是!

如果你真的这么写,可能会T成SB,出题人可能会构造数据把单旋卡成$n^2$,不要问我为什么!(其实是我不知道)

一个感性的理解是这样的

把一个点双旋到根,可以使得从根到它的路径上的所有点的深度变为大约原来的一半,其它点的深度最多增加2

或者你可以了解一下为啥单旋是错的

下面我们介绍一下双旋的Splay

这里的情况有很多,但是总的来说就三种情况

1.to是x的爸爸,

这样的话吧x旋转上去就好

update in 2018.2.19

这里可能写错了一个地方(其实也没有写错)

因为我们在双旋的时候会改变三个点的关系,为了方别写,所以我们开始的时候把to设置为to的爸爸

if (tree[tree[x].fa].fa == to) rotate(x);

2.x和他爸爸和他爸爸的爸爸在一条线上

这时候先把Y旋转上去,再把X旋转上去就好

else if (ident(x) == ident(tree[x].fa)) rotate(tree[x].fa), rotate(x);

3.x和他爸爸和他爸爸的爸爸不在一条线上

这时候把X旋转两次就好

总的代码:

void splay(int x, int to) {
to = tree[to].fa;
while (tree[x].fa != to) {
if (tree[tree[x].fa].fa == to) rotate(x);
else if (ident(x) == ident(tree[x].fa)) rotate(tree[x].fa), rotate(x);
else rotate(x), rotate(x);
}
}

后记

至此,Spaly的最核心最基本的操作已经讲解完毕

至于这玩意儿怎么用,以及能实现什么功能,且听下回分解

splay详解(一)的更多相关文章

  1. 在洛谷3369 Treap模板题 中发现的Splay详解

    本题的Splay写法(无指针Splay超详细) 前言 首先来讲...终于调出来了55555...调了整整3天..... 看到大部分大佬都是用指针来实现的Splay.小的只是按照Splay的核心思想和原 ...

  2. splay详解(二)

    前言 在上一节中,我们讲述了Splay的核心操作rotate与splay 本节我会教大家如何用这两个函数实现各种强大的功能 为了方便讲解,我们拿这道题做例题来慢慢分析 利用splay实现各种功能 首先 ...

  3. splay详解(三)

    前言 上一节我们学习了splay所能解决的基本问题,这节我来讲一下splay怎么搞区间问题 实现 splay搞区间问题非常简单,比如我们要在区间$l,r$上搞事情,那么我们首先把$l$的前驱旋转到根节 ...

  4. 普通Splay详解

    预备知识: 二叉搜索树(BST) 至于BST,随便看一下就可以, 我们知道二叉搜索树是O(logN)的,那我们为什么要用平衡树呢? 之前我们了解到,BST的插入是小的往左子树走,大的往右子树走,如果凉 ...

  5. Splay详解

    平衡树实际很简单的 以下讲解都以Luogu P3369 [模板]普通平衡树为例 我不会带指针的Splay,所以我就写非指针型的Splay Splay是基于二叉查找树(bst)实现的 什么是二叉查找树呢 ...

  6. [转载]Splay Tree数组实现+详解

    变量声明:f[i]表示i的父结点,ch[i][0]表示i的左儿子,ch[i][1]表示i的右儿子,key[i]表示i的关键字(即结点i代表的那个数字),cnt[i]表示i结点的关键字出现的次数(相当于 ...

  7. Link-Cut-Tree详解

    图片参考YangZhe的论文,FlashHu大佬的博客 Link-Cut-Tree实际靠的是实链剖分,重链剖分和长链剖分珂以参考树链剖分详解 Link-Cut-Tree将某一个儿子的连边划分为实边,而 ...

  8. Linq之旅:Linq入门详解(Linq to Objects)

    示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...

  9. 架构设计:远程调用服务架构设计及zookeeper技术详解(下篇)

    一.下篇开头的废话 终于开写下篇了,这也是我写远程调用框架的第三篇文章,前两篇都被博客园作为[编辑推荐]的文章,很兴奋哦,嘿嘿~~~~,本人是个很臭美的人,一定得要截图为证: 今天是2014年的第一天 ...

随机推荐

  1. json转义 使用 JavaScriptSerializer 时 需要添加的引用

    当创建JavaScriptSerializer创建对象时,JavaScriptSerializer jss=new JavaScriptSerializer():时. 1.   需要添加的是Syste ...

  2. C语言面试题分类->指针

    有关指针的经典面试题 C语言为何如此长寿并实用?C++为什么有那么多精彩?指针可以说是C/C++中的灵魂所在,虽然早期中pascal也有指针,但是和C/C++比起来不是一个级别的.今天为大家深入浅出的 ...

  3. External Snapshot management

    External Snapshot management Symptom As of at least libvirt 1.1.1, external snapshot support is inco ...

  4. 【Nim游戏】高僧斗法

    先来看看Nim定理: // 若干堆硬币,二人轮流取,从一堆硬币中取几个 直到某个人不能取硬币 那这个人就输了 // 3 4 5 // 3 3 把硬币变成相同的 那么你就赢了 因为你可以跟着另一个人一样 ...

  5. Java设计模式之单例模式,笔记完整到不敢想象

    单例模式: 作用 保证一个类只有一个实例,并且提供一个访问该实例的全局访问入口 单例模式的常用 1.Windows的任务管理器2.Windows的回收站,也是一个单例应用3.项目中的读取配置文件的对象 ...

  6. toastr操作完成提示框

    toastr.js组件 关于信息提示框,项目中使用的是toastr.js这个组件,这个组件最大的好处就是异步.无阻塞,提示后可设置消失时间,并且可以将消息提示放到界面的各个地方. 官方文档以及源码 源 ...

  7. [Swift]LeetCode350. 两个数组的交集 II | Intersection of Two Arrays II

    Given two arrays, write a function to compute their intersection. Example 1: Input: nums1 = [1,2,2,1 ...

  8. [Swift]LeetCode462. 最少移动次数使数组元素相等 II | Minimum Moves to Equal Array Elements II

    Given a non-empty integer array, find the minimum number of moves required to make all array element ...

  9. Docker基础命令和时区问题

    Docker 命令 1. 安装Docker # ubuntu系统安装 $ sudo apt install docker-ce # 启动docker $ sudo systemctl start do ...

  10. [Abp 源码分析]四、模块配置

    0.简要介绍 在 Abp 框架当中通过各种 Configuration 来实现模块的配置,Abp 本身提供的很多基础设施功能的一些在运行时的行为是通过很多不同的 Configuration 来开放给用 ...