splay详解(一)
前言
Spaly是基于二叉查找树实现的,
什么是二叉查找树呢?就是一棵树呗:joy: ,但是这棵树满足性质—一个节点的左孩子一定比它小,右孩子一定比它大
比如说

这就是一棵最基本二叉查找树
对于每次插入,它的期望复杂度大约是$logn$级别的,但是存在极端情况,比如9999999 9999998 9999997.....1这种数据,会直接被卡成$n^2$
在这种情况下,平衡树出现了!
Splay简介
Splay是平衡树的一种,中文名为伸展树,由丹尼尔·斯立特Daniel Sleator和罗伯特·恩卓·塔扬Robert Endre Tarjan在1985年发明的(mmp怎么又是tarjan)
它的主要思想是:对于查找频率较高的节点,使其处于离根节点相对较近的节点。
这样就可以保证了查找的效率
那么现在问题来了:
- 什么样的点是查找频率高的点?
这个玩意儿确实不好统计,但是你可以认为每次被查找的点查找频率相对较高,说白了就是你把每次查找到的点搬到根节点去
当然你也可以每次查找之后随机一个点作为根,于是Treaplay这种数据结构就诞生啦
- 怎么实现把节点搬到根这种操作?
这也是Splay这种数据结构所要实现的功能,接下来我们详细的介绍一下
Splay基本操作
rotate
首先考虑一下,我们要把一个点挪到根,那我们首先要知道怎么让一个点挪到它的父节点
情况1
当X是Y的左孩子

这时候如果我们让X成为Y的父亲,只会影响到3个点的关系
B与X,X与Y,X与R
根据二叉排序树的性质
B会成为Y的左儿子
Y会成为X的右儿子
X会成为R的儿子,具体是什么儿子,这个要看Y是R的啥儿子
经过变换之后,大概是这样

情况2
当X是Y的右孩子
本质上和上面是一样的,

变换后为

这两种代码单独实现都比较简单,我就不写了(实际上是我懒)
但是这两种旋转情况很类似,第二种情况实际就是把第一种情况的X,Y换了换位置
我们考虑一下能不能将这两种情况合并起来实现呢?
答案是肯定的
首先我们要获取到每一个节点它是它爸爸的哪个孩子,可以这么写
bool ident(int x) {
return tree[tree[x].fa].ch[] == x ? : ;
}
如果是左孩子的话会返回0,右孩子会返回1
那么我们不难得到R,Y,X这三个节点的信息
int Y = tree[x].fa;
int R = tree[Y].fa;
int Yson = ident(x); //x是y的哪个孩子
int Rson = ident(Y);
B的情况我们可以根据X的情况推算出来,根据^运算的性质,0^1=1,1^1=0,2^1=3,3^1=2,而且B相对于X的位置一定是与X相对于Y的位置是相反的
(否则在旋转的过程中不会对B产生影响)
int B = tree[x].ch[Yson ^ ];
然后我们考虑连接的过程
根据上面的图,不难得到
B成为Y的哪个儿子与X是Y的哪个儿子是一样的
Y成为X的哪个儿子与X是Y的哪个儿子相反
X成为R的哪个儿子与Y是R的哪个儿子相同
connect(B, Y, Yson);
connect(Y, x, Yson ^ );
connect(x, R, Rson);
connect函数这么写,挺显然的
void connect(int x, int fa, int how) { //x节点将成为fa节点的how孩子
tree[x].fa = fa;
tree[fa].ch[how] = x;
}
单旋函数就是这样了,利用这个函数就可以实现把一个节点搬到它的爸爸那儿了,
Splay
Splay(x,to)是实现把x节点搬到to节点
最简单的办法,对于x这个节点,每次上旋直到to
但是!
如果你真的这么写,可能会T成SB,出题人可能会构造数据把单旋卡成$n^2$,不要问我为什么!(其实是我不知道)
一个感性的理解是这样的
把一个点双旋到根,可以使得从根到它的路径上的所有点的深度变为大约原来的一半,其它点的深度最多增加2
或者你可以了解一下为啥单旋是错的

下面我们介绍一下双旋的Splay
这里的情况有很多,但是总的来说就三种情况
1.to是x的爸爸,
这样的话吧x旋转上去就好
update in 2018.2.19
这里可能写错了一个地方(其实也没有写错)
因为我们在双旋的时候会改变三个点的关系,为了方别写,所以我们开始的时候把to设置为to的爸爸
if (tree[tree[x].fa].fa == to) rotate(x);
2.x和他爸爸和他爸爸的爸爸在一条线上

这时候先把Y旋转上去,再把X旋转上去就好
else if (ident(x) == ident(tree[x].fa)) rotate(tree[x].fa), rotate(x);
3.x和他爸爸和他爸爸的爸爸不在一条线上

这时候把X旋转两次就好
总的代码:
void splay(int x, int to) {
to = tree[to].fa;
while (tree[x].fa != to) {
if (tree[tree[x].fa].fa == to) rotate(x);
else if (ident(x) == ident(tree[x].fa)) rotate(tree[x].fa), rotate(x);
else rotate(x), rotate(x);
}
}
后记
至此,Spaly的最核心最基本的操作已经讲解完毕
至于这玩意儿怎么用,以及能实现什么功能,且听下回分解
splay详解(一)的更多相关文章
- 在洛谷3369 Treap模板题 中发现的Splay详解
本题的Splay写法(无指针Splay超详细) 前言 首先来讲...终于调出来了55555...调了整整3天..... 看到大部分大佬都是用指针来实现的Splay.小的只是按照Splay的核心思想和原 ...
- splay详解(二)
前言 在上一节中,我们讲述了Splay的核心操作rotate与splay 本节我会教大家如何用这两个函数实现各种强大的功能 为了方便讲解,我们拿这道题做例题来慢慢分析 利用splay实现各种功能 首先 ...
- splay详解(三)
前言 上一节我们学习了splay所能解决的基本问题,这节我来讲一下splay怎么搞区间问题 实现 splay搞区间问题非常简单,比如我们要在区间$l,r$上搞事情,那么我们首先把$l$的前驱旋转到根节 ...
- 普通Splay详解
预备知识: 二叉搜索树(BST) 至于BST,随便看一下就可以, 我们知道二叉搜索树是O(logN)的,那我们为什么要用平衡树呢? 之前我们了解到,BST的插入是小的往左子树走,大的往右子树走,如果凉 ...
- Splay详解
平衡树实际很简单的 以下讲解都以Luogu P3369 [模板]普通平衡树为例 我不会带指针的Splay,所以我就写非指针型的Splay Splay是基于二叉查找树(bst)实现的 什么是二叉查找树呢 ...
- [转载]Splay Tree数组实现+详解
变量声明:f[i]表示i的父结点,ch[i][0]表示i的左儿子,ch[i][1]表示i的右儿子,key[i]表示i的关键字(即结点i代表的那个数字),cnt[i]表示i结点的关键字出现的次数(相当于 ...
- Link-Cut-Tree详解
图片参考YangZhe的论文,FlashHu大佬的博客 Link-Cut-Tree实际靠的是实链剖分,重链剖分和长链剖分珂以参考树链剖分详解 Link-Cut-Tree将某一个儿子的连边划分为实边,而 ...
- Linq之旅:Linq入门详解(Linq to Objects)
示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...
- 架构设计:远程调用服务架构设计及zookeeper技术详解(下篇)
一.下篇开头的废话 终于开写下篇了,这也是我写远程调用框架的第三篇文章,前两篇都被博客园作为[编辑推荐]的文章,很兴奋哦,嘿嘿~~~~,本人是个很臭美的人,一定得要截图为证: 今天是2014年的第一天 ...
随机推荐
- 将选中的物体写入XML文件
using System.Collections;using System.Collections.Generic;using System.Xml.Linq;using UnityEditor;us ...
- 官方JwPlayer去水印步骤
在前端播放视频,现在用html5的video标签已经是一个不错的选择,不过有时候还是需要用StrobeMediaPlayback.JWPlayer这一类的flash播放器,JWPlayer的免费版本带 ...
- Python学习宝典,Python400集让你成为从零基础到手写神经网络的Python大神
当您学完Python,你学到了什么? 开发网站! 或者, 基础语法要点.函数.面向对象编程.调试.IO编程.进程与线程.正则表达式... 当你学完Python,你可以干什么? 当程序员! 或者, 手写 ...
- [SQL]LeetCode596. 超过5名学生的课 | Classes More Than 5 Students
SQL架构 Create table If Not Exists courses (student varchar(), )) Truncate table courses insert into c ...
- [SQL]LeetCode627. 交换工资 | Swap Salary
SQL架构 create table ), sex ), salary int) Truncate table salary insert into salary (id, name, sex, sa ...
- Python的数据库操作(pymysql)
使用原生SQL语句进行对数据库操作,可完成数据库表的建立和删除,及数据表内容的增删改查操作等.其可操作性很强,如可以直接使用“show databases”.“show tables”等语句进行表格之 ...
- Python 工厂函数和内建函数
工厂函数 工厂函数都是类对象, 即当你调用他们时, 创建的其实是一个类实例 例如: str(), list(), tuple()... 内建函数 内建函数通常是python自定义的一些函数, 这些函数 ...
- 『离散化 discrete』
离散化(discrete) 离散化可以说是一个很基础的算法吧,但是有些时候还是很好用很有必要的算法. 离散化的排序的一个运用,具体地讲,离散化算法是将无穷大集合中的若干个元素映射到有限大小的集合中,以 ...
- 探索ASP.NET Core中的IStartupFilter
原文:Exploring IStartupFilter in ASP.NET Core 作者:Andrew Lock 译者:Lamond Lu 在本篇博客中,我将介绍一下IStartupFilter, ...
- windows部署MongoDB
打开MongoDb下载页面,分别下载Community Server和Compass,注意在安装Community Server时可以勾选同时安装Compass,但会比较慢,所以建议两个分开下载安装. ...