FAST MONTE CARLO ALGORITHMS FOR MATRICES II (快速的矩阵分解策略)
Drineas P, Kannan R, Mahoney M W, et al. Fast Monte Carlo Algorithms for Matrices II: Computing a Low-Rank Approximation to a Matrix[J]. SIAM Journal on Computing, 2006, 36(1): 158-183.
问题
我们有一个矩阵\(A \in \mathbb{R}^{m \times n}\),我们需要对其进行矩阵的分解,很完美很经典的一种方法就是SVD,但是这种方法 的缺憾在于,需要的计算量比较大。不妨设\(A\)的奇异值分解为:
\]
其中:\(U = [u^1, u^2, \ldots, u^m] \in \mathbb{R}^{m \times m}\),\(V = [v^1, v^2, \ldots, v^n] \in \mathbb{R}^{n \times n}\), \(\Sigma = diag(\sigma_1, \sigma_2, \ldots, \sigma_{\rho} \in \mathbb{R}^{m \times n}), \rho=\min{m, n}\)。
假设\(\sigma_1 \ge \sigma_2 \ge \sigma_3 \ldots \ge \sigma_r > \sigma_{r+1}=\ldots=\sigma_{\rho}=0\),那么\(rank(A) = r\),矩阵\(A\)的零空间\(\mathrm{null}(A)=span(v^{r+1}, \ldots, v^{\rho})\),矩阵\(A\)的值域为\(\mathrm{range}(A) = span(u^1, \ldots, u^r)\)
那么\(A\)可以有下面的方法表示:
\]
到这里,我们简单介绍了SVD。回到正题,为了避免计算量大的问题,这篇文章提出了一种基于蒙特卡洛采样的矩阵分解的算法。
算法
为什么可以这么采样,以及概率的选择,在FAST MONTE CARLO ALGORITHMS FOR MATRICES I中有介绍。算法的思想很朴素,但是通篇的证明让人抓耳挠腮。
LINEARTIMESVD 算法
CONSTANTTIMESVD 算法
理论
俩个算法,作者都给除了形如下的界(大概率):
\(\xi=2,F\),\(D*\)是\(A\)的一个低秩的逼近。
算法1的理论
作者先给出的是下面的证明,
我们先来分析上面的不等式,比较可以发现\(D^* = H_kH_K^TA\),注意,\(C = H\Sigma_CY\),\(A_k = U_kU_k^TA\)
我们先来看第一部分的证明,这部分只是简单地利用了\(Tr\)的性质。
第二部分的证明,是为了导出定理2的后面部分,第一个不等式,利用了Cauchy-Schwarz不等式,把\(|\|A^TH_k\|_F^2- \sum_{t=1}^k \sigma_t^2 (C)|\)看成\(|\sum \limits_{t=1}^k (|A^Th^t|^2-\sigma_t^2(C))\times 1|\)这就成了俩个向量的内积了。第二个等式易证,第三个等式同样。最后一个不等式,是因为,如果我们将\(h^t, t=1,\ldots,k\)扩充为一组标准正交基\(h^t,t=1,\ldots,m\),那么\(\sum \limits_{t=1}^{m}({h^t}^T(AA^T-CC^T)h^t)=\sum \limits_{t=1}^{m} \lambda_t\),其中\(\lambda_t\)是\(AA^T-CC^T\)的特征值(降序排列)。我们知道\(a+b=c, a,b>0\),\(max(a^2+b^2)=c^2\),通过数学归纳法,容易得到最后一个不等式。
第三部分的证明,第一个不等式,同样利用了Cauchy-Schwarz不等式,接下来的等式和不等式易证。最后一个不等式,利用了Hoffman-Wielandt不等式:
这个不等式的证明比较麻烦,在《代数特征值问题》一书中有提(虽然书中矩阵是方阵,可以类似地推导)。
最后一部分通过加一项减一项就可以得到了。
到此关于\(F\)范数的一个理论就得到了,接下来作者给出了关于\(2\)范数的性质。
通过与定理2的比较可以发现,缺了\(\sqrt{k}\)这一部分。
令\(\mathcal{H}_k=range(H_k) = span(h^1,\ldots,h^k)\),\(\mathcal{H}_{m-k}\)为其正交补。那么,对于任意向量\(x \ in \mathbb{R}^m\),可以分解为\(x = \alpha y + \beta z,y\in \mathcal{H}_k, z \in \mathcal{H}_{m-k}\),而且\(\alpha^2 + \beta^2 = 1\)
第一部分的证明,不等式部分利用了三角不等式,及\(\alpha, \beta \le 1\)的性质。最后一个等式成立的原因是\(H_kH_k^T y = y, y \in \mathcal{H}_k\)
第二部分的证明,第一个不等式部分的后半部分是显然的,前半部分是因为\(z \in \mathcal{H}_{m-k}\),第二个不等式,我们需要利用下面的一个性质:
到此,这部分的定理也证毕了。
接下来,还有定理4:
这部分的证明,需要利用FAST MONTE CARLO ALGORITHMS FOR MATRICES I 中的性质,这里便不讲了。
算法2 的理论
我们只给出了结果,证明实在有些长。
代码
import numpy as np
class FastSVD:
def __init__(self, A):
self.m, self.n = A.shape
self.A = np.array(A, dtype=float)
self.norm_F = FastSVD.forbenius(self.A)
@classmethod
def forbenius(cls, A):
"""矩阵A的F范数"""
return np.sum(A ** 2)
@classmethod
def approx_h(cls, A):
"""A=UDV^T, 我们要U"""
value, vector = np.linalg.eig(A.T @ A)
U = []
for i in range(len(value)):
if value[i] < 1e-15:
break
else:
U.append(A @ vector[:, i] / np.sqrt(value[i]))
return np.array(U).T
def fastSVD(self, c):
"""返回的H的每一列是我们所需要的"""
assert isinstance(c, int), "{0} is not an integer"
p = np.array([self.A[:, i] @ self.A[:, i] / self.norm_F for i in range(self.n)])
lucky_dog = np.random.choice(np.arange(self.n), size=c, replace=True, p=p)
C = np.zeros((self.m, c))
for t, dog in enumerate(lucky_dog):
C[:, t] = self.A[:, dog] / np.sqrt(c * p[dog])
H = FastSVD.approx_h(C)
return H
FAST MONTE CARLO ALGORITHMS FOR MATRICES II (快速的矩阵分解策略)的更多相关文章
- (转)Markov Chain Monte Carlo
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...
- Monte Carlo Policy Evaluation
Model-Based and Model-Free In the previous several posts, we mainly talked about Model-Based Reinfor ...
- Monte Carlo方法简介(转载)
Monte Carlo方法简介(转载) 今天向大家介绍一下我现在主要做的这个东东. Monte Carlo方法又称为随机抽样技巧或统计实验方法,属于计算数学的一个分支,它是在上世纪四十年代 ...
- [其他] 蒙特卡洛(Monte Carlo)模拟手把手教基于EXCEL与Crystal Ball的蒙特卡洛成本模拟过程实例:
http://www.cqt8.com/soft/html/723.html下载,官网下载 (转帖)1.定义: 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数 ...
- Monte Carlo Method(蒙特·卡罗方法)
0-故事: 蒙特卡罗方法是计算模拟的基础,其名字来源于世界著名的赌城——摩纳哥的蒙特卡罗. 蒙特卡罗一词来源于意大利语,是为了纪念王子摩纳哥查理三世.蒙特卡罗(MonteCarlo)虽然是个赌城,但很 ...
- 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)
(学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...
- 蒙特卡罗(Monte Carlo)方法简介
蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法. 二 解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发 ...
- Monte carlo
转载 http://blog.sciencenet.cn/blog-324394-292355.html 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数 ...
- 蒙特卡罗方法、蒙特卡洛树搜索(Monte Carlo Tree Search,MCTS)初探
1. 蒙特卡罗方法(Monte Carlo method) 0x1:从布丰投针实验说起 - 只要实验次数够多,我就能直到上帝的意图 18世纪,布丰提出以下问题:设我们有一个以平行且等距木纹铺成的地板( ...
随机推荐
- tuxedo开发
近来一直在和某电信的系统做对接开发,需要从对方系统(tuxedo)中查询数据后进行显示,本来是个挺简单的事情,无奈tuxedo这个东西以前真是没听说过,网上能用的资料也不多,真是苦了我这段时间,还好已 ...
- SSH学习
简介 SSH或Secure Shell是一种远程管理协议,允许用户通过Internet控制和修改远程服务器.该服务是作为未加密Telnet的安全替代品创建的,它使用加密技术确保与远程服务器之间的所有通 ...
- 《C#并发编程经典实例》学习笔记—2.3 报告任务
问题 异步操作时,需要展示该操作的进度 解决方案 IProgress<T> Interface和Progress<T> Class 插一段话:读<C#并发编程经典实例&g ...
- es6 Moduel 默认名与非默认名
export default default 本质是将后面变量(值)赋给 default,然后以default名称输出. import 在获取default变量时,写在大括号的外面 ,可自定义名称. ...
- 在ubuntu16.04中再次体验.net core 2.0
在上一篇文章中在ubuntu16.04中初次体验.net core 2.0 简单介绍了一下ubuntu中运行.net core 2.0.配置nginx反向代理以及安装supervisor守护进程……本 ...
- Vue-指令
1. v-text:这个指令用于将vue实例中的data内的属性渲染到标签内.有两种写法: 1. `<div v-text="数据"></div>`:该写法 ...
- 【Dojo 1.x】笔记5 使用本地引用
习惯用CDN引用的同学肯定会知道还有一种叫本地引用,这篇笔记测试本地引用. Dojo SDK下载地址:点我 下载中间的Release Package即可,如果希望下载完整包(Full Source), ...
- TortoiseSVN 安装时出现 please install the universal crt
解决步骤: 1.打开 https://www.microsoft.com/zh-cn/ 2.搜索 universal crt (hotfix kb2999226) 3.点击链接 4.选择适合自己的版本 ...
- java.lang.NullPointerException一个低级的解决方法
java.lang.NullPointerException 这次因为调用了类的方法的时候忘记了new对象了 导致该对象为空
- 【公众号系列】两分钟学会SAP F1技巧
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[公众号系列]两分钟学会SAP F1技巧 写 ...