Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum. 思路

    这道题我们可以使用回溯法,动态规划。但是回溯法的时间复杂度太高。当m,n比较大时时间复杂度会比较高,会出现时间复杂度超时的情况。因此我直接使用动态规划来解决。 这里的动态方程为 dp[i][j] = min(dp[i-1][j], dp[i][j-1])+nums[i][j]。时间复杂度为O(m*n), 空间复杂度为O(n),
解决代码

 class Solution(object):
def minPathSum(self, nums):
"""
:type grid: List[List[int]] # 这一个我们采用的是申请一个辅助矩阵来解决问题,所以这个方法的空间复杂度为O(n*m)。
:rtype: int
"""
if not nums:
return 0
m , n = len(nums), len(nums[0])
dp = []
for i in range(m): # 申请辅助空间
dp.append([0]*n)
dp[0][0] = nums[0][0]
for i in range(1, m): # 初始第一列
dp[i][0] = dp[i-1][0] + nums[i][0]
for i in range(1,n): # 初始化第一行
dp[0][i] = dp[0][i-1] + nums[0][i] for i in range(1, m): # 从第二行第二个元素开始直到最后一个
for j in range(1, n):
dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + nums[i][j]
return dp[m-1][n-1]

  空间复杂度为O(n)的解法

 class Solution(object):
def minPathSum(self, nums):
"""
:type grid: List[List[int]]
:rtype: int
"""
if not nums:
return 0
m , n = len(nums), len(nums[0])
dp = [0]*n # 申请一个长度为n的辅助数组
dp[0] = nums[0][0]
for i in range(1, n): # 先对第一行进行初始化
dp[i] = dp[i-1] + nums[0][i] for i in range(1, m): # 然后从第二行开始
dp[0] += nums[i][0] # 每一行第一个元素只能从上面达到。
for j in range(1, n):
dp[j] = min(dp[j], dp[j-1]) + nums[i][j]

return dp[-1]

【LeetCode每天一题】Minimum Path Sum(最短路径和)的更多相关文章

  1. LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II

    之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...

  2. LeetCode(64) Minimum Path Sum

    题目 Total Accepted: 47928 Total Submissions: 148011 Difficulty: Medium Given a m x n grid filled with ...

  3. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  4. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  5. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  6. 刷题64. Minimum Path Sum

    一.题目说明 题目64. Minimum Path Sum,给一个m*n矩阵,每个元素的值非负,计算从左上角到右下角的最小路径和.难度是Medium! 二.我的解答 乍一看,这个是计算最短路径的,迪杰 ...

  7. [Leetcode Week9]Minimum Path Sum

    Minimum Path Sum 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/minimum-path-sum/description/ Descr ...

  8. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  9. 【leetcode】Minimum Path Sum

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

随机推荐

  1. Win7 安装bundle

    bundle依赖ruby,因此需要下载并安装一下内容: 1. rubyinstaller 这个是windows专用的ruby安装程序,下载地址是http://rubyinstaller.org/ 2. ...

  2. Datatables插件1.10.15版本服务器处理模式ajax获取分页数据实例解析

    一.问题描述 前端需要使用表格来展示数据,找了一些插件,最后确定使用dataTables组件来做. 后端的分页接口已经写好了,不能修改.接口需要传入页码(pageNumber)和页面显示数据条数(pa ...

  3. [八省联考2018]林克卡特树lct

    题解: zhcs的那个题基本上就是抄这个题的,不过背包的分数变成了70分.. 不过得分开来写..因为两个数组不能同时满足 背包的话就是 $f[i][j][0/1]$表示考虑i子树,取j条链,能不能向上 ...

  4. request.getParameter和request.setAttribute/request.getAttribute

    https://blog.csdn.net/ryelqy/article/details/79230513 request.getQueryString https://blog.csdn.net/w ...

  5. react学习一篇就够了

    webstrom自动格式化代码 命令 js框架 MVC 安装 npm install create-react-app -g 生成项目(项目名npm发包包命名规范 /^[a-z0-9_-]$/) cr ...

  6. BZOJ.4598.[SDOI2016]模式字符串(点分治 Hash)

    LOJ BZOJ 洛谷 点分治.考虑如何计算过\(rt\)的答案. 记\(pre[i]\)表示(之前的)子树内循环匹配了\(S\)的前缀\(i\)的路径有多少,\(suf[i]\)表示(之前的)子树内 ...

  7. 搜素题 --java

    Poj2531 首先把所有节点都放在一组,然后采用深度优先搜索的方法,对每一个节点都做判断是否应该移到另一组去,判断的依据是移过去和不移过去哪个得到的和值比较大(这里移去B组后的计算方法就是加上该点和 ...

  8. module.exports 和 exports(转)

    CommonJS规范规定,每个模块内部,module变量代表当前模块.这个变量是一个对象,它的exports属性(即module.exports)是对外的接口.加载某个模块,其实是加载该模块的modu ...

  9. GMA Round 1

    学弟说我好久没更blog了. 因为自己最近其实没干什么. 所以来搬运一下GMA Round 1 的比赛内容吧,blog访问量.网站流量一举两得. 链接:https://enceladus.cf/con ...

  10. 艺术模板 art-template-web

    艺术模板 art-template____jQuery 项目可用 最快的模板渲染引擎 兼容 ejs 语法 推荐语法 {{each arr}} {{$value}} ---- {{$index}} {{ ...