[EOJ Monthly 2018.10][C. 痛苦的 01 矩阵]
题目链接:C. 痛苦的 01 矩阵
题目大意:原题说的很清楚了,不需要简化_(:з」∠)_
题解:设\(r_i\)为第\(i\)行中0的个数,\(c_j\)为第\(j\)列中0的个数,\(f_{i,j}\)代表对应格子是否为0,则有\(cost(i,j)=r_i+c_j-f_{i,j}\),\((cost(i,j))^2=r_i^2+c_j^2+f_{i,j}+2r_ic_j-2f_{i,j}(r_i+c_j)\)
$$\sum_{i=1}^n \sum_{j=1}^n \left( cost(i,j) \right)^2 = \sum_{i=1}^n (r_i^2+c_i^2)+\sum_{i=1}^n \sum_{j=1}^nf_{i,j}+2(\sum_{i=1}^nr_i)(\sum_{j=1}^nc_j)-2f_{i,j}\sum_{i=1}^n \sum_{j=1}^n(r_i+c_j)$$
初始状态下,\(ans=n^2*(2n-1)^2, r_i=c_i=n\),给出\(k\)个为1的方格可以看做进行\(k\)次反转操作,之后把式子中的每一项一一对应地进行修改就好了
#include<bits/stdc++.h>
using namespace std;
#define N 200001
#define LL long long
#define MOD 1000000007
LL n,k,q,x,y,u,v,r[N],sr[N],c[N],sc[N],ans;
set<LL>s;
void add(LL x,LL y)
{
s.insert(x*N+y);
r[x]--,c[y]--;
ans+=MOD-n*(2ll*r[x]+)%MOD,ans%=MOD;
ans+=MOD-n*(2ll*c[y]+)%MOD,ans%=MOD;
ans+=MOD-,ans%=MOD;
ans+=2ll*(MOD-sc[n]+MOD-sr[n]+),ans%=MOD;
ans+=2ll*(r[x]++c[y]+)%MOD,ans%=MOD;
ans+=2ll*r[x]%MOD+2ll*c[y]%MOD,ans%=MOD;
sc[n]--,sr[n]--;
}
void del(LL x,LL y)
{
sc[n]++,sr[n]++;
ans+=MOD-(2ll*r[x]%MOD+2ll*c[y]%MOD)%MOD,ans%=MOD;
ans+=MOD-(2ll*(r[x]++c[y]+)%MOD)%MOD,ans%=MOD;
ans+=2ll*(sc[n]+sr[n]-)%MOD,ans%=MOD;
ans++,ans%=MOD;
ans+=n*(2ll*c[y]+)%MOD,ans%=MOD;
ans+=n*(2ll*r[x]+)%MOD,ans%=MOD;
r[x]++,c[y]++;
s.erase(x*N+y);
}
int main()
{
scanf("%lld%lld%lld",&n,&k,&q);
for(LL i=;i<=n;i++)
{
r[i]=c[i]=n;
sr[i]=(sr[i-]+r[i])%MOD;
sc[i]=(sc[i-]+c[i])%MOD;
}
ans=4ll*n*n-4ll*n+,ans%=MOD;
ans*=n*n%MOD,ans%=MOD;
for(LL i=;i<=k;i++)
scanf("%lld%lld",&x,&y),add(x,y);
printf("%lld\n",ans);
for(LL i=;i<=q;i++)
{
scanf("%lld%lld",&u,&v);
if(s.count(u*N+v))del(u,v);
else add(u,v);
printf("%lld\n",ans);
}
return ;
}
[EOJ Monthly 2018.10][C. 痛苦的 01 矩阵]的更多相关文章
- 2018.10.18 NOIP训练 01矩阵(组合数学)
传送门 组合数学好题. 题目要求输出的结果成功把概率转化成了种类数. 本来可以枚举统计最小值为iii时的概率. 现在只需要统计最小值为iii时的方案数,每一行有不少于iii个1的方案数. 显然一行选i ...
- EOJ Monthly 2018.4 (E.小迷妹在哪儿(贪心&排序&背包)
ultmaster 男神和小迷妹们玩起了捉迷藏的游戏. 小迷妹们都希望自己被 ultmaster 男神发现,因此她们都把自己位置告诉了 ultmaster 男神,因此 ultmaster 男神知道了自 ...
- EOJ Monthly 2018.7
准备继续大学acm啦 又要开始愉快的码码码啦 第一次在华东师大OJ上面做题 看来EOJ上的积分体质是假的,我怎么一把上红??? A.数三角形 神tm的防AK题放在A,出题人很不友好啊... 先写了个暴 ...
- EOJ Monthly 2018.8 D. Delivery Service-树上差分(边权/边覆盖)(边权转点权)(模板题)
D. Delivery Service 单测试点时限: 2.5 秒 内存限制: 512 MB EOJ Delivery Service Company handles a massive amount ...
- EOJ Monthly 2018.2
A. 坑爹的售票机 题意 用\(1,5,10,25,50,100\)的纸币买\(n\)张单价为\(p\)的船票,且一次性最多买\(k\)张,求钱数恰好时最少需要多少张纸币. Hard: \(n,k,p ...
- EOJ Monthly 2018.1 F 最小OR路径
题目链接 Description 给定一个有 \(n\) 个点和 \(m\) 条边的无向图,其中每一条边 \(e_i\) 都有一个权值记为 \(w_i\) . 对于给出的两个点 \(a\) 和 \(b ...
- EOJ Monthly 2018.3
985月赛我只喜欢ECNU.jpg A. 打工时不可能打工的 Time limit per test: 2.0 seconds Memory limit: 256 megabytes 我 Ayano ...
- EOJ Monthly 2018.4
A. ultmaster 的小迷妹们 Time limit per test: 2.0 seconds Memory limit: 256 megabytes ultmaster 男神和他的小迷妹们准 ...
- EOJ Monthly 2018.11 D. 猜价格
猜价格 分两种情况讨论: k≤n,先猜至多 k 次 1,由于回答 <1 肯定是假的,所以可以把剩余系下是哪次错试出来,然后用至多 n 次搞定. k>n,每个数都猜两次,如果两次结果不一样, ...
随机推荐
- SpringBoot系列: SpringBoot Web项目中使用Shiro
注意点有:1. 不要启用 spring-boot-devtools, 如果启用 devtools 后, 不管是热启动还是手工重启, devtools总是试图重新恢复之前的session数据, 很有可能 ...
- nginx使用ssl模块配置支持HTTPS访问,腾讯云申请免费证书
开始我尝试用 let's encrypt 让http 变 https 官方:https://github.com/certbot/certbot 参考:https://www.cnblogs.com/ ...
- 自定义border 为 dashed 时的虚线间距
li{ width: 100%; height: 3px; background-image: linear-gradient(to right, #009a61 0%, #009a61 50%, t ...
- 查看oracle当前的连接数
SQL> select count(*) from v$session #当前的连接数SQL> Select count(*) from v$session where status='A ...
- JS媒体查询
样式的改变使用C3的媒体查询 行为和功能的改变使用JS的媒体查询 matchMedia()方法参数可写任何一个CSS@media规则,返回的是新的MediaQueryList对象,该对象有两个属性 m ...
- Shell 基础教程
一个比较好的shell基础教程: http://www.runoob.com/linux/linux-shell.html
- Sublime text3 连接sftp/ftp(远程服务器)
1.按下Ctrl + Shift + P调出命令面板2.在输入框中输入Sftp,按回车下载3.建一个新的文件夹放到左边的项目栏中4.右击文件夹,选中SFTP/FTP,点击Map to Remote5. ...
- C语言malloc函数为一维,二维,三维数组分配空间
c语言允许建立内存动态分配区域,以存放一些临时用的数据,这些数据不必在程序的声明部分定义,也不必等到函数结束时才释放,而是需要时随时开辟,不需要时随时释放,这些数据存储在堆区.可以根据需要,向系统申请 ...
- PowerDesigner的Table视图同时显示Code和Name的方法[转发]
PowerDesigner中Table视图同时显示Code和Name,像下图这样的效果: 实现方法:Tools-Display Preference
- 网络抓包教程之tcpdump
现在的移动端应用几乎都会通过网络请求来和服务器交互,通过抓包来诊断和网络相关的bug是程序员的重要技能之一.抓包的手段有很多:针对http和https可以使用Charles设置代理来做,对于更广泛的协 ...