浅谈RNN、LSTM + Kreas实现及应用
本文主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N、N对1的结构,什么是LSTM,以及LSTM中的三门(input、ouput、forget),后续将利用深度学习框架Kreas,结合案例对LSTM进行进一步的介绍。
一、RNN的原理
RNN(Recurrent Neural Networks),即全称循环神经网络,它是一种对序列型的数据进行建模的深度模型。如图1.1所示。

图1.1
1、其中
为序列数据。即神经网络的输入,例如nlp中,X1可以看作第一个单词、X2可以看作是第二个单词,依次类推。语音处理中,可以将
是每帧的声音信号。时间序列中,例如,某生活用品的销量数据。
2、U、W、V是参数矩阵,b、c是偏置项,f是激活函数,通常采用”热撸”、tanh函数作为激活函数,用softmax将输出转换成各个类别的概率。
3、上图为经典的RNN结构,其运算过程可以表示为:

式中:
表示神经网络的输出;
表示前一个时间点的状态;
4、考虑到输入与输出的关系,序列问题具有以下分类:
一对多的RNN结构:序列输出,用于图像字幕,如图1.2所示。

图1.2
多对一的RNN结构:序列输入,用于情感分类,如图1.3所示。

图1.3
多对多:序列输入和输出,用于机器翻译
同步多对多:同步序列输入和输出,用于视频分类
二、LSTM的原理
上面第一部分简单介绍了RNN的几种结构,接下来,介绍一下RNN的改进版:LSTM。LSTM(long short-term memory,长短时记忆网络),它的出现解决了很难处理的“长程依赖”问题,即无法学到序列中蕴含的间隔时间较长的规律。RNN每一层的隐状态都由前一层的隐状态经过变换和激活函数得到,反向传播求导时最终得到的导数会包含每一步梯度的连乘,将会引起梯度的消失或者梯度的爆炸。LSTM在隐状态使用了加法替代了每一步的迭代变换,这样便可以避免梯度消失的问题,从而使得网络学到长程的规律。
RNN可用图1.4表示

图1.4
同理,LSTM的结构图1.5所示

图1.5
其中图1.5中的符号,长方形表示对输入的数据做变换或激活函数;圆形表示逐点,逐点运算是指两个形状完全相同的矩形的对应位置进行相加、相乘或者其他的一些运算;箭头则表示向量会在那里进行运算。注意:
通过concat操作,才进入Sigmoid或tanh函数。
RNN与LSTM有所不同,LSTM的隐状态有两部分,一部分是ht ,另一部分则是
,
在各个步骤之间传递的主要信息,绿色的水平线可看作“主干道”,如图1.6所示。通过加法,
可以无障碍的在这条主干道上传递,因此较远的梯度也可以在长程上传播,这便是LSTM的核心思想。

图1.6
但是,不是每一步的信息
都是完全使用前一步的
,而是在
的基础之上“遗忘”掉一些内容,或“记住”一些内容。
1、 遗忘门,我们首先谈一谈遗忘门,每个单元都有一个“遗忘门”,用来控制遗忘掉
的那些部分,其结构如图1.7所示。其中σ是sigmoid激活函数,它的输出在0~1之间,遗忘门输出的
相同形状的矩阵,该矩阵将会和
逐点相乘,决定遗忘掉那部分内容。经过激活函数的输出,f取值接近0的维度上的信息就会被“忘记”,而f取值接近1的维度上的信息就会被保留。

图1.7
2、 输入层,如图1.8,在循环神经网络“忘记”了部分之前的状态后,它还需要从当前的输入补充最新的记忆,这个过程就是“输入门”完成的。输入门的输入同样是两项,分别是:
。它的输出项,一项是
,
同样经过Sigmoid函数运算得到,其值都是在0~1之间,还有一项
。最终要“记住”的内容是
与
点相乘,如图1.9。

图1.8

图1.9
3、 输出门,输出门用于计算另一个隐状态的值,真正的输出(如类别)需要通过做进一步运算得到。输出门的结构如图1.20所示,同样根据
计算,
中每一个数值在0~1之间,
通过
得到。

图1.20
最终总结:LSTM中每一步的输入是
,隐状态是
,最终的输出必须要经过
进一步变换得到。
浅谈RNN、LSTM + Kreas实现及应用的更多相关文章
- 深度学习:浅谈RNN、LSTM+Kreas实现与应用
主要针对RNN与LSTM的结构及其原理进行详细的介绍,了解什么是RNN,RNN的1对N.N对1的结构,什么是LSTM,以及LSTM中的三门(input.ouput.forget),后续将利用深度学习框 ...
- 浅谈分词算法(5)基于字的分词方法(bi-LSTM)
目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...
- 浅谈分词算法(4)基于字的分词方法(CRF)
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 ...
- 浅谈分词算法(3)基于字的分词方法(HMM)
目录 前言 目录 隐马尔可夫模型(Hidden Markov Model,HMM) HMM分词 两个假设 Viterbi算法 代码实现 实现效果 完整代码 参考文献 前言 在浅谈分词算法(1)分词中的 ...
- 时间序列(六): 炙手可热的RNN: LSTM
目录 炙手可热的LSTM 引言 RNN的问题 恐怖的指数函数 梯度消失* 解决方案 LSTM 设计初衷 LSTM原理 门限控制* LSTM 的 BPTT 参考文献: 炙手可热的LSTM 引言 上一讲说 ...
- 浅谈 Attention 机制的理解
什么是注意力机制? 注意力机制模仿了生物观察行为的内部过程,即一种将内部经验和外部感觉对齐从而增加部分区域的观察精细度的机制.例如人的视觉在处理一张图片时,会通过快速扫描全局图像,获得需要重点关注的目 ...
- 浅谈分词算法基于字的分词方法(HMM)
前言 在浅谈分词算法(1)分词中的基本问题我们讨论过基于词典的分词和基于字的分词两大类,在浅谈分词算法(2)基于词典的分词方法文中我们利用n-gram实现了基于词典的分词方法.在(1)中,我们也讨论了 ...
- 浅谈 Fragment 生命周期
版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...
- 浅谈 LayoutInflater
浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...
随机推荐
- MyBatis(五)select返回list数据
(1)接口中编写方法 public List<Emp> getEmps(String lastName); (2)编写Mapper文件 <select id="getEmp ...
- 对象转JSON
/// <summary> /// 把对象序列化 JSON 字符串 /// </summary> /// <typeparam name="T"> ...
- Windows下编译jcef
依赖软件参考 本文参考官方网站上的jcef编译过程 编译成功的环境如下: windows 10 64 bit JDK 1.8.0_121 64 bit Python 2.7.13 git versio ...
- 微信小程序中的AJAX——POST,GET区别
注意:发送服务器时的DATA 最终发送给服务器的数据是 String 类型,如果传入的 data 不是 String 类型,会被转换成 String .转换规则如下: 对于 GET 方法的数据,会将数 ...
- Vue 过滤器的使用
Vue官方文档是这样说的:Vue过滤器用于格式化一些常见的文本. 在实际项目中的使用: 定义过滤器 在src定义一个filter.js文件,里面定义过滤器函数,在最后要使用 exprot defaul ...
- PHP 反射的简单使用
反射机制简介 之前已经介绍过Java反射机制的简单使用,所有的反射机制的思想作用等都是类似的,下面就一起来了解一下PHP反射机制. 个人理解:反射机制就是可以利用类名或者一个类的对象来获取关于这个类的 ...
- pip和cmd常用命令
1.pip常用命令 显示模块的详情 pip show 安装模块 pip install 模块名称 卸载模块 pip uninstall 模块名称 查看当前环境 ...
- 牛人的blog,关于推荐,topic model的
http://blog.csdn.net/zhoubl668?viewmode=list
- MySQL 千万级 数据库或大表优化
首先考虑如下因素: 1.数据的容量:1-3年内会大概多少条数据,每条数据大概多少字节: 2.数据项:是否有大字段,那些字段的值是否经常被更新: 3.数据查询SQL条件:哪些数据项的列名称经常出现在WH ...
- Python学到什么程度就可以去找工作?掌握这4点足够了!
大家在学习Python的时候,有人会问“Python要学到什么程度才能出去找工作”,对于在Python培训机构学习Python的同学来说这都不是问题,因为按照Python课程大纲来,一般都不会有什么问 ...