UVA - 11374 - Airport Express(堆优化Dijkstra)
Time Limit: 1000 mSec
Problem Description
In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the Economy-Xpress and the Commercial-Xpress. They travel at different speeds, take different routes and have different costs. Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn’t have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him. Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.
Input
The input consists of several test cases. Consecutive cases are separated by a blank line. The first line of each case contains 3 integers, namely N, S and E (2 ≤ N ≤ 500,1 ≤ S,E ≤ N), which represent the number of stations, the starting point and where the airport is located respectively. There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next M lines give the information of the routes of the Economy-Xpress. Each consists of three integers X, Y and Z (X,Y ≤ N,1 ≤ Z ≤ 100). This means X and Y are connected and it takes Z minutes to travel between these two stations. The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next K lines contain the information of the CommercialXpress in the same format as that of the Economy-Xpress. All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.
Output
For each case, you should first list the number of stations which Jason would visit in order. On the next line, output ‘Ticket Not Used’ if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.
Sample Input
Sample Output
1 2 4
2
5
题解:考虑枚举用哪个商业票,为什么这么想呢,因为堆优化Dijkstra复杂度(n+m)logn,乘上个K,如果没有多组数据的话应该是能过的,其实可以做到更好,分别从起点和终点跑两遍最短路,这样对于枚举的用商业票的那一段来说就可以常数时间内算出总费用,因为最短路一定是w(u, v) + dist[u](起点到u最短路) + dist2[v](v到终点最短路),这样问题就在O(K)时间内解决了。
#include <bits/stdc++.h> using namespace std; #define REP(i, n) for (int i = 1; i <= (n); i++)
#define sqr(x) ((x) * (x)) const int maxn = + ;
const int maxm = + ;
const int maxs = + ; typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd; const LL unit = 1LL;
const int INF = 0x3f3f3f3f;
const LL mod = ;
const double eps = 1e-;
const double inf = 1e15;
const double pi = acos(-1.0); struct Edge
{
int to, w, next;
} edge[maxm]; struct HeapNode
{
int dis, u;
bool operator<(const HeapNode &a) const
{
return dis > a.dis;
}
}; int tot, head[maxn];
int n, m, k;
int st, en; void init()
{
tot = ;
memset(head, -, sizeof(head));
} void AddEdge(int u, int v, int w)
{
edge[tot].to = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
} int dist[maxn], dist2[maxn];
int pre[maxn], Next[maxn];
bool vis[maxn]; int Dijkstra()
{
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
priority_queue<HeapNode> que;
pre[st] = st;
dist[st] = ;
que.push((HeapNode){, st});
while (!que.empty())
{
HeapNode first = que.top();
que.pop();
int u = first.u;
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (dist[v] > dist[u] + edge[i].w)
{
pre[v] = u;
dist[v] = dist[u] + edge[i].w;
que.push((HeapNode){dist[v], v});
}
}
}
return dist[en];
} void Dijkstra2()
{
memset(dist2, INF, sizeof(dist2));
memset(vis, false, sizeof(vis));
memset(Next, -, sizeof(Next));
priority_queue<HeapNode> que;
dist2[en] = ;
Next[en] = en;
que.push((HeapNode){, en});
while (!que.empty())
{
HeapNode first = que.top();
que.pop();
int u = first.u;
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (dist2[v] > dist2[u] + edge[i].w)
{
Next[v] = u;
dist2[v] = dist2[u] + edge[i].w;
que.push((HeapNode){dist2[v], v});
}
}
}
} int main()
{
ios::sync_with_stdio(false);
cin.tie();
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
bool ok = false;
while (cin >> n >> st >> en)
{
init();
cin >> m;
int x, y, z;
for (int i = ; i < m; i++)
{
cin >> x >> y >> z;
AddEdge(x, y, z);
AddEdge(y, x, z);
}
int Min = Dijkstra();
//cout << "Min:" << Min << endl;
Dijkstra2();
cin >> k;
int ansu = -, ansv = -;
for(int i = ; i < k; i++)
{
cin >> x >> y >> z;
if(dist[x] + z + dist2[y] < Min)
{
Min = dist[x] + z + dist2[y];
ansu = x, ansv = y;
}
if(dist[y] + z + dist2[x] < Min)
{
Min = dist[y] + z + dist2[x];
ansu = y, ansv = x;
}
}
if(!ok)
ok = true;
else
cout << endl;
//cout << "Min:" << Min << endl;
if(ansu == - && ansv == -)
{
int tmp = st;
while(tmp != en)
{
cout << tmp << " ";
tmp = Next[tmp];
}
cout << en << endl;
cout << "Ticket Not Used" << endl;
cout << Min << endl;
}
else
{
int tmp = ansu;
stack<int> ans;
while(!ans.empty())
ans.pop();
while(tmp != st)
{
ans.push(tmp);
tmp = pre[tmp];
}
ans.push(st);
while(!ans.empty())
{
cout << ans.top() << " ";
ans.pop();
}
tmp = ansv;
while (tmp != en)
{
cout << tmp << " ";
tmp = Next[tmp];
}
cout << en << endl;
cout << ansu << endl;
cout << Min << endl;
}
}
return ;
}
UVA - 11374 - Airport Express(堆优化Dijkstra)的更多相关文章
- UVA 11374 Airport Express SPFA||dijkstra
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA - 11374 Airport Express (Dijkstra模板+枚举)
Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Express ...
- UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)
题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...
- UVa 11374 - Airport Express ( dijkstra预处理 )
起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b); ans = min( d1[a] + cost(a, b ...
- UVA 11374 Airport Express(最短路)
最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...
- UVA 11374 Airport Express (最短路)
题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...
- UVA 11374 Airport Express(枚举+最短路)
枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...
- uva 11374 最短路+记录路径 dijkstra最短路模板
UVA - 11374 Airport Express Time Limit:1000MS Memory Limit:Unknown 64bit IO Format:%lld & %l ...
- BZOJ 3040 最短路 (堆优化dijkstra)
这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...
随机推荐
- 使用RESTful风格开发Java Web
什么是RESTful风格? REST是REpresentational State Transfer的缩写(一般中文翻译为表述性状态转移),REST 是一种体系结构,而 HTTP 是一种包含了 RES ...
- linux中文件的三种time(atime,mtime,ctime)
linux下文件有3个时间的,分别是atime,mtime,ctime.有些博友对这3个时间还是比较迷茫和困惑的,我整理了下,写下来希望对博友们有所帮助. 1 这三个time的含义 简名 全名 中文名 ...
- Linux基础知识第一讲,基本目录结构与基本命令
目录 一丶Window 与 Linux的目录结构 1.Windows 与 Linux目录简介 2.Linux目录主要作用 3.任务栏与菜单栏,与关闭按钮 二丶Linux终端与常见命令学习 1.终端中的 ...
- Linux下的C#连接Mysql数据库
今天在尝试在 Linux 系统下使用C#连接数据库,发现网上这方面的信息很少,所以就写一篇博客记录一下. Linux下这里使用的是mono. 首先是缺少Mysql.Data.dll这个库的,所以需要安 ...
- 小程序开发笔记【一】,查询用户参与活动列表 left join on的用法
今天在做一个用户活动查询功能的时候,查询参与的活动.正常,使用egg-mysql查询数据一般会这么写 result = await this.app.mysql.select('tb_activity ...
- javascript中filter的用法
filter filter也是一个常用的操作,它用于把Array的某些元素过滤掉,然后返回剩下的元素. 和map()类似,Array的filter()也接收一个函数.和map()不同的是,filter ...
- WebService简单介绍(一)
分布式系统或软件如何通信?使用WebService服务.说它是服务可以,web通信中间件也ok,web通信组件....... 特点 自包含 自描述 跨平台.跨语言 基于开放和标准 (用了xml,嗯,开 ...
- C# 实现对PPT文档加密、解密以及重置密码的操作
工作中我们会使用到各种各样的文档,其中,PPT起着不可或缺的作用.一份PPT文档里可能包含重要商业计划.企业运营资料或者公司管理资料等.因此,在竞争环境里,企业重要资料的保密工作就显得尤为重要,而对于 ...
- Maven(十四)Maven 继承
以Junit为例 由于junit的依赖的范围为test,所以在每一个项目中都必须配置一个junit. 为了统一管理方便,可以单独创建一个项目用来进行**统一管理**junit的版本 即在子项目中不设置 ...
- JS之This的用法
This的用法 This作为JavaScript中的关键字,在函数中具有四种用法. 一.直接在函数中使用,谁调用这个函数,this就指向谁 例如: var n = "指我"; fu ...