UVA - 11374 - Airport Express(堆优化Dijkstra)
Time Limit: 1000 mSec
Problem Description
In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the Economy-Xpress and the Commercial-Xpress. They travel at different speeds, take different routes and have different costs. Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn’t have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him. Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.
Input
The input consists of several test cases. Consecutive cases are separated by a blank line. The first line of each case contains 3 integers, namely N, S and E (2 ≤ N ≤ 500,1 ≤ S,E ≤ N), which represent the number of stations, the starting point and where the airport is located respectively. There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next M lines give the information of the routes of the Economy-Xpress. Each consists of three integers X, Y and Z (X,Y ≤ N,1 ≤ Z ≤ 100). This means X and Y are connected and it takes Z minutes to travel between these two stations. The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next K lines contain the information of the CommercialXpress in the same format as that of the Economy-Xpress. All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.
Output
For each case, you should first list the number of stations which Jason would visit in order. On the next line, output ‘Ticket Not Used’ if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.
Sample Input
Sample Output
1 2 4
2
5
题解:考虑枚举用哪个商业票,为什么这么想呢,因为堆优化Dijkstra复杂度(n+m)logn,乘上个K,如果没有多组数据的话应该是能过的,其实可以做到更好,分别从起点和终点跑两遍最短路,这样对于枚举的用商业票的那一段来说就可以常数时间内算出总费用,因为最短路一定是w(u, v) + dist[u](起点到u最短路) + dist2[v](v到终点最短路),这样问题就在O(K)时间内解决了。
#include <bits/stdc++.h> using namespace std; #define REP(i, n) for (int i = 1; i <= (n); i++)
#define sqr(x) ((x) * (x)) const int maxn = + ;
const int maxm = + ;
const int maxs = + ; typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd; const LL unit = 1LL;
const int INF = 0x3f3f3f3f;
const LL mod = ;
const double eps = 1e-;
const double inf = 1e15;
const double pi = acos(-1.0); struct Edge
{
int to, w, next;
} edge[maxm]; struct HeapNode
{
int dis, u;
bool operator<(const HeapNode &a) const
{
return dis > a.dis;
}
}; int tot, head[maxn];
int n, m, k;
int st, en; void init()
{
tot = ;
memset(head, -, sizeof(head));
} void AddEdge(int u, int v, int w)
{
edge[tot].to = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
} int dist[maxn], dist2[maxn];
int pre[maxn], Next[maxn];
bool vis[maxn]; int Dijkstra()
{
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
priority_queue<HeapNode> que;
pre[st] = st;
dist[st] = ;
que.push((HeapNode){, st});
while (!que.empty())
{
HeapNode first = que.top();
que.pop();
int u = first.u;
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (dist[v] > dist[u] + edge[i].w)
{
pre[v] = u;
dist[v] = dist[u] + edge[i].w;
que.push((HeapNode){dist[v], v});
}
}
}
return dist[en];
} void Dijkstra2()
{
memset(dist2, INF, sizeof(dist2));
memset(vis, false, sizeof(vis));
memset(Next, -, sizeof(Next));
priority_queue<HeapNode> que;
dist2[en] = ;
Next[en] = en;
que.push((HeapNode){, en});
while (!que.empty())
{
HeapNode first = que.top();
que.pop();
int u = first.u;
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (dist2[v] > dist2[u] + edge[i].w)
{
Next[v] = u;
dist2[v] = dist2[u] + edge[i].w;
que.push((HeapNode){dist2[v], v});
}
}
}
} int main()
{
ios::sync_with_stdio(false);
cin.tie();
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
bool ok = false;
while (cin >> n >> st >> en)
{
init();
cin >> m;
int x, y, z;
for (int i = ; i < m; i++)
{
cin >> x >> y >> z;
AddEdge(x, y, z);
AddEdge(y, x, z);
}
int Min = Dijkstra();
//cout << "Min:" << Min << endl;
Dijkstra2();
cin >> k;
int ansu = -, ansv = -;
for(int i = ; i < k; i++)
{
cin >> x >> y >> z;
if(dist[x] + z + dist2[y] < Min)
{
Min = dist[x] + z + dist2[y];
ansu = x, ansv = y;
}
if(dist[y] + z + dist2[x] < Min)
{
Min = dist[y] + z + dist2[x];
ansu = y, ansv = x;
}
}
if(!ok)
ok = true;
else
cout << endl;
//cout << "Min:" << Min << endl;
if(ansu == - && ansv == -)
{
int tmp = st;
while(tmp != en)
{
cout << tmp << " ";
tmp = Next[tmp];
}
cout << en << endl;
cout << "Ticket Not Used" << endl;
cout << Min << endl;
}
else
{
int tmp = ansu;
stack<int> ans;
while(!ans.empty())
ans.pop();
while(tmp != st)
{
ans.push(tmp);
tmp = pre[tmp];
}
ans.push(st);
while(!ans.empty())
{
cout << ans.top() << " ";
ans.pop();
}
tmp = ansv;
while (tmp != en)
{
cout << tmp << " ";
tmp = Next[tmp];
}
cout << en << endl;
cout << ansu << endl;
cout << Min << endl;
}
}
return ;
}
UVA - 11374 - Airport Express(堆优化Dijkstra)的更多相关文章
- UVA 11374 Airport Express SPFA||dijkstra
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA - 11374 Airport Express (Dijkstra模板+枚举)
Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Express ...
- UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)
题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...
- UVa 11374 - Airport Express ( dijkstra预处理 )
起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b); ans = min( d1[a] + cost(a, b ...
- UVA 11374 Airport Express(最短路)
最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...
- UVA 11374 Airport Express (最短路)
题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...
- UVA 11374 Airport Express(枚举+最短路)
枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...
- uva 11374 最短路+记录路径 dijkstra最短路模板
UVA - 11374 Airport Express Time Limit:1000MS Memory Limit:Unknown 64bit IO Format:%lld & %l ...
- BZOJ 3040 最短路 (堆优化dijkstra)
这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...
随机推荐
- shell函数-3
1.shell函数 1.1.shell函数定义 对于重复出现的代码,在shell中可以定义函数,然后在指定的地方调用即可.便于代码复用,提高开发效率. 定义函数的语法如下: function 函数名( ...
- 如何把你的.net程序打包上传到nuget
写在前面 每个.net开发者都经常用nuget管理自己的程序包,install一个json组件啊,一个工具类什么的,这些都是别人写好的.如果我也写好了一个自己感觉很拿的出手的组件,想轻松的使用nuge ...
- Python爬虫实例:爬取豆瓣Top250
入门第一个爬虫一般都是爬这个,实在是太简单.用了 requests 和 bs4 库. 1.检查网页元素,提取所需要的信息并保存.这个用 bs4 就可以,前面的文章中已经有详细的用法阐述. 2.找到下一 ...
- Data Source与数据库连接池简介 JDBC简介(八)
DataSource是作为DriverManager的替代品而推出的,DataSource 对象是获取连接的首选方法. 起源 为何放弃DriverManager DriverManager负责管理驱动 ...
- MariaDB官方手册翻译
MariaDB官方手册 翻译:create database语句(已提交到MariaDB官方手册) 翻译:rename table语句(已提交到MariaDB官方手册) 翻译:alter table语 ...
- 【.NET Core项目实战-统一认证平台】第十二章 授权篇-深入理解JWT生成及验证流程
[.NET Core项目实战-统一认证平台]开篇及目录索引 上篇文章介绍了基于Ids4密码授权模式,从使用场景.原理分析.自定义帐户体系集成完整的介绍了密码授权模式的内容,并最后给出了三个思考问题,本 ...
- 一统江湖的大前端(2)—— Mock.js + Node.js 如何与后端潇洒分手
<一统江湖的大前端>系列是自己的前端学习笔记,旨在介绍javascript在非网页开发领域的应用案例和发现各类好玩的js库,不定期更新.如果你对前端的理解还是写写页面绑绑事件,那你真的是有 ...
- Docker入门(二)在docker使用MongoDB
本文将介绍如何在docker中使用MongoDB. 如果你是一名MongoDB的初学者,那么你入门MongoDB的第一件事就是安装MongoDB,但是安装MongoDB又不是一件简单的事情,还 ...
- DSAPI HTTP监听服务端与客户端_指令版
前面介绍了DSAPI多功能组件编程应用-HTTP监听服务端与客户端的内容,这里介绍一个适用于更高效更快速的基于HTTP监听的服务端.客户端. 在本篇,你将见到前所未有的超简化超傻瓜式的HTTP监听服务 ...
- Linux学习笔记之Django项目部署(CentOS)----进阶篇
一.引入 当我们开发好了一个Django项目之后是需要部署到服务器上的,这样才能正式使用这个项目.之前用了一个运行.sh文件的方法让项目得以在后台运行,其实随着学习的深入,这种方法其实是有点low的, ...