Problem    UVA - 11374 - Airport Express

Time Limit: 1000 mSec

Problem Description

In a small city called Iokh, a train service, Airport-Express, takes residents to the airport more quickly than other transports. There are two types of trains in Airport-Express, the Economy-Xpress and the Commercial-Xpress. They travel at different speeds, take different routes and have different costs. Jason is going to the airport to meet his friend. He wants to take the Commercial-Xpress which is supposed to be faster, but he doesn’t have enough money. Luckily he has a ticket for the Commercial-Xpress which can take him one station forward. If he used the ticket wisely, he might end up saving a lot of time. However, choosing the best time to use the ticket is not easy for him. Jason now seeks your help. The routes of the two types of trains are given. Please write a program to find the best route to the destination. The program should also tell when the ticket should be used.

Input

The input consists of several test cases. Consecutive cases are separated by a blank line. The first line of each case contains 3 integers, namely N, S and E (2 ≤ N ≤ 500,1 ≤ S,E ≤ N), which represent the number of stations, the starting point and where the airport is located respectively. There is an integer M (1 ≤ M ≤ 1000) representing the number of connections between the stations of the Economy-Xpress. The next M lines give the information of the routes of the Economy-Xpress. Each consists of three integers X, Y and Z (X,Y ≤ N,1 ≤ Z ≤ 100). This means X and Y are connected and it takes Z minutes to travel between these two stations. The next line is another integer K (1 ≤ K ≤ 1000) representing the number of connections between the stations of the Commercial-Xpress. The next K lines contain the information of the CommercialXpress in the same format as that of the Economy-Xpress. All connections are bi-directional. You may assume that there is exactly one optimal route to the airport. There might be cases where you MUST use your ticket in order to reach the airport.

Output

For each case, you should first list the number of stations which Jason would visit in order. On the next line, output ‘Ticket Not Used’ if you decided NOT to use the ticket; otherwise, state the station where Jason should get on the train of Commercial-Xpress. Finally, print the total time for the journey on the last line. Consecutive sets of output must be separated by a blank line.

Sample Input

4 1 4 4 1 2 2 1 3 3 2 4 4 3 4 5 1 2 4 3

Sample Output

1 2 4

2

5

题解:考虑枚举用哪个商业票,为什么这么想呢,因为堆优化Dijkstra复杂度(n+m)logn,乘上个K,如果没有多组数据的话应该是能过的,其实可以做到更好,分别从起点和终点跑两遍最短路,这样对于枚举的用商业票的那一段来说就可以常数时间内算出总费用,因为最短路一定是w(u, v) + dist[u](起点到u最短路) + dist2[v](v到终点最短路),这样问题就在O(K)时间内解决了。

 #include <bits/stdc++.h>

 using namespace std;

 #define REP(i, n) for (int i = 1; i <= (n); i++)
#define sqr(x) ((x) * (x)) const int maxn = + ;
const int maxm = + ;
const int maxs = + ; typedef long long LL;
typedef pair<int, int> pii;
typedef pair<double, double> pdd; const LL unit = 1LL;
const int INF = 0x3f3f3f3f;
const LL mod = ;
const double eps = 1e-;
const double inf = 1e15;
const double pi = acos(-1.0); struct Edge
{
int to, w, next;
} edge[maxm]; struct HeapNode
{
int dis, u;
bool operator<(const HeapNode &a) const
{
return dis > a.dis;
}
}; int tot, head[maxn];
int n, m, k;
int st, en; void init()
{
tot = ;
memset(head, -, sizeof(head));
} void AddEdge(int u, int v, int w)
{
edge[tot].to = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
} int dist[maxn], dist2[maxn];
int pre[maxn], Next[maxn];
bool vis[maxn]; int Dijkstra()
{
memset(dist, INF, sizeof(dist));
memset(vis, false, sizeof(vis));
memset(pre, -, sizeof(pre));
priority_queue<HeapNode> que;
pre[st] = st;
dist[st] = ;
que.push((HeapNode){, st});
while (!que.empty())
{
HeapNode first = que.top();
que.pop();
int u = first.u;
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (dist[v] > dist[u] + edge[i].w)
{
pre[v] = u;
dist[v] = dist[u] + edge[i].w;
que.push((HeapNode){dist[v], v});
}
}
}
return dist[en];
} void Dijkstra2()
{
memset(dist2, INF, sizeof(dist2));
memset(vis, false, sizeof(vis));
memset(Next, -, sizeof(Next));
priority_queue<HeapNode> que;
dist2[en] = ;
Next[en] = en;
que.push((HeapNode){, en});
while (!que.empty())
{
HeapNode first = que.top();
que.pop();
int u = first.u;
if (vis[u])
continue;
vis[u] = true;
for (int i = head[u]; i != -; i = edge[i].next)
{
int v = edge[i].to;
if (dist2[v] > dist2[u] + edge[i].w)
{
Next[v] = u;
dist2[v] = dist2[u] + edge[i].w;
que.push((HeapNode){dist2[v], v});
}
}
}
} int main()
{
ios::sync_with_stdio(false);
cin.tie();
//freopen("input.txt", "r", stdin);
//freopen("output.txt", "w", stdout);
bool ok = false;
while (cin >> n >> st >> en)
{
init();
cin >> m;
int x, y, z;
for (int i = ; i < m; i++)
{
cin >> x >> y >> z;
AddEdge(x, y, z);
AddEdge(y, x, z);
}
int Min = Dijkstra();
//cout << "Min:" << Min << endl;
Dijkstra2();
cin >> k;
int ansu = -, ansv = -;
for(int i = ; i < k; i++)
{
cin >> x >> y >> z;
if(dist[x] + z + dist2[y] < Min)
{
Min = dist[x] + z + dist2[y];
ansu = x, ansv = y;
}
if(dist[y] + z + dist2[x] < Min)
{
Min = dist[y] + z + dist2[x];
ansu = y, ansv = x;
}
}
if(!ok)
ok = true;
else
cout << endl;
//cout << "Min:" << Min << endl;
if(ansu == - && ansv == -)
{
int tmp = st;
while(tmp != en)
{
cout << tmp << " ";
tmp = Next[tmp];
}
cout << en << endl;
cout << "Ticket Not Used" << endl;
cout << Min << endl;
}
else
{
int tmp = ansu;
stack<int> ans;
while(!ans.empty())
ans.pop();
while(tmp != st)
{
ans.push(tmp);
tmp = pre[tmp];
}
ans.push(st);
while(!ans.empty())
{
cout << ans.top() << " ";
ans.pop();
}
tmp = ansv;
while (tmp != en)
{
cout << tmp << " ";
tmp = Next[tmp];
}
cout << en << endl;
cout << ansu << endl;
cout << Min << endl;
}
}
return ;
}

UVA - 11374 - Airport Express(堆优化Dijkstra)的更多相关文章

  1. UVA 11374 Airport Express SPFA||dijkstra

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA - 11374 Airport Express (Dijkstra模板+枚举)

    Description Problem D: Airport Express In a small city called Iokh, a train service, Airport-Express ...

  3. UVA 11374 Airport Express 机场快线(单源最短路,dijkstra,变形)

    题意: 给一幅图,要从s点要到e点,图中有两种无向边分别在两个集合中,第一个集合是可以无限次使用的,第二个集合中的边只能挑1条.问如何使距离最短?输出路径,用了第二个集合中的哪条边,最短距离. 思路: ...

  4. UVa 11374 - Airport Express ( dijkstra预处理 )

    起点和终点各做一次单源最短路, d1[i], d2[i]分别代表起点到i点的最短路和终点到i点的最短路,枚举商业线车票cost(a, b);  ans = min( d1[a] + cost(a, b ...

  5. UVA 11374 Airport Express(最短路)

    最短路. 把题目抽象一下:已知一张图,边上的权值表示长度.现在又有一些边,只能从其中选一条加入原图,使起点->终点的距离最小. 当加上一条边a->b,如果这条边更新了最短路,那么起点st- ...

  6. UVA 11374 Airport Express (最短路)

    题目只有一条路径会发生改变. 常见的思路,预处理出S和T的两个单源最短路,然后枚举商业线,商业线两端一定是选择到s和t的最短路. 路径输出可以在求最短路的同时保存pa数组得到一棵最短路树,也可以用di ...

  7. UVA 11374 Airport Express(枚举+最短路)

    枚举每条商业线<a, b>,设d[i]为起始点到每点的最短路,g[i]为终点到每点的最短路,ans便是min{d[a] + t[a, b] + g[b]}.注意下判断是否需要经过商业线.输 ...

  8. uva 11374 最短路+记录路径 dijkstra最短路模板

    UVA - 11374 Airport Express Time Limit:1000MS   Memory Limit:Unknown   64bit IO Format:%lld & %l ...

  9. BZOJ 3040 最短路 (堆优化dijkstra)

    这题不是裸的最短路么?但是一看数据范围就傻了.点数10^6,边数10^7.这个spfa就别想了(本来spfa就是相当不靠谱的玩意),看来是要用堆优化dijkstra了.但是,平时写dijkstra时为 ...

随机推荐

  1. django中url路由配置及渲染方式

    今天我们学习如何配置url.如何传参.如何命名.以及渲染的方式,内容大致有以下几个方面. 创建视图函数并访问 创建app django中url规则 捕获参数 路径转换器 正则表达式 额外参数 渲染方式 ...

  2. HTTP与HTTPS的理解

    最近一直也在面试的过程中,可能由于各个方面的问题,导致没有时间抽出更新博客,今天开始陆续更新!!!以后自己的博客,会向React Native,swift ,以及H5延展,成为一个全栈的技术人员.本篇 ...

  3. 第20章 定义客户端 - Identity Server 4 中文文档(v1.0.0)

    客户端表示可以从您的身份服务器请求令牌的应用程序. 详细信息各不相同,但您通常会为客户端定义以下常用设置: 唯一的客户ID 如果需要的秘密 允许与令牌服务的交互(称为授权类型) 身份和/或访问令牌发送 ...

  4. JavaScript 基础结构

    注释      代码注释可以使用//或者/* */ // 这是一个单行注释 /* * 这是 * 一个 * 多行 * 注释 */ 变量      变量用于存储数据,在同一作用域内变量不得重名,定义语法: ...

  5. JQuery官方学习资料(译):遍历JQuery对象和非JQuery对象

        JQuery提供了一个对象遍历的Utility方法$.each()和一个JQuery集合遍历方法.each(). $.each()     $.each()是一个通用的方法用来遍历对象和数组, ...

  6. [PHP] 按位与& 或| 异或^ 的日常使用

    按位与:0&0=0; 0&1=0; 1&0=0; 1&1=1;按位或:0|0=0: 0|1=1: 1|0=1: 1|1=1;按位异或,在或的基础上1 1也为0:0^0= ...

  7. 面试题之(vue生命周期)

    在面试的时候,vue生命周期被考察的很频繁. 什么是vue生命周期呢? Vue实例有一个完整的生命周期,也就是从开始创建.初始化数据.编译模板.挂载Dom.渲染→更新→渲染.卸载等一系列过程,我们称这 ...

  8. 程序员50题(JS版本)(五)

    程序21:有一分数序列:2/1,3/2,5/3,8/5,13/8,21/13...求出这个数列的前20项之和. var arr=[]; var count=20; for(var i=0;i<= ...

  9. vue遍历数组和对象的方法以及他们之间的区别

    前言:vue不能直接通过下标的形式来添加数据,vue也不能直接向对象中插值,因为那样即使能插入值,页面也不会重新渲染数据 一,vue遍历数组   1,使用vue数组变异方法 pop() 删除数组最后一 ...

  10. ES6 Module export与import复合使用

    export与import复合使用 基本语法 export {...} from '文件'; 等价于 import {...} from "文件": export {...} 先加 ...