YOLO包括 V1, V2, V3

YOLO v1:2016

优点:快,45fps,泛化性能好

缺点:检测小物体不太行, 如成群的鸟. 与 Fast R-CNN相比,定位不太准

  • YOLO的网络结构

YOLO v1 network (没看懂论文上的下图,看下面这个表一目了然了)

24层的卷积层,开始用前面20层来training, 图片是224x224的,然后用448x448 再train 后面4层,最后得到的model 是24层的model.

最后输出7x7个grid cell, 30 表示 2个bounding box (每个5个数字) 加上 20 classes

  

┌────────────┬────────────────────────┬───────────────────┐
│ Name │ Filters │ Output Dimension │
├────────────┼────────────────────────┼───────────────────┤
│ Conv 1 │ 7 x 7 x 64, stride=2 │ 224 x 224 x 64 │
│ Max Pool 1 │ 2 x 2, stride=2 │ 112 x 112 x 64 │
│ Conv 2 │ 3 x 3 x 192 │ 112 x 112 x 192 │
│ Max Pool 2 │ 2 x 2, stride=2 │ 56 x 56 x 192 │
│ Conv 3 │ 1 x 1 x 128 │ 56 x 56 x 128 │
│ Conv 4 │ 3 x 3 x 256 │ 56 x 56 x 256 │
│ Conv 5 │ 1 x 1 x 256 │ 56 x 56 x 256 │
│ Conv 6 │ 1 x 1 x 512 │ 56 x 56 x 512 │
│ Max Pool 3 │ 2 x 2, stride=2 │ 28 x 28 x 512 │
│ Conv 7 │ 1 x 1 x 256 │ 28 x 28 x 256 │
│ Conv 8 │ 3 x 3 x 512 │ 28 x 28 x 512 │
│ Conv 9 │ 1 x 1 x 256 │ 28 x 28 x 256 │
│ Conv 10 │ 3 x 3 x 512 │ 28 x 28 x 512 │
│ Conv 11 │ 1 x 1 x 256 │ 28 x 28 x 256 │
│ Conv 12 │ 3 x 3 x 512 │ 28 x 28 x 512 │
│ Conv 13 │ 1 x 1 x 256 │ 28 x 28 x 256 │
│ Conv 14 │ 3 x 3 x 512 │ 28 x 28 x 512 │
│ Conv 15 │ 1 x 1 x 512 │ 28 x 28 x 512 │
│ Conv 16 │ 3 x 3 x 1024 │ 28 x 28 x 1024 │
│ Max Pool 4 │ 2 x 2, stride=2 │ 14 x 14 x 1024 │
│ Conv 17 │ 1 x 1 x 512 │ 14 x 14 x 512 │
│ Conv 18 │ 3 x 3 x 1024 │ 14 x 14 x 1024 │
│ Conv 19 │ 1 x 1 x 512 │ 14 x 14 x 512 │
│ Conv 20 │ 3 x 3 x 1024 │ 14 x 14 x 1024 │
│ Conv 21 │ 3 x 3 x 1024 │ 14 x 14 x 1024 │
│ Conv 22 │ 3 x 3 x 1024, stride=2 │ 7 x 7 x 1024 │
│ Conv 23 │ 3 x 3 x 1024 │ 7 x 7 x 1024 │
│ Conv 24 │ 3 x 3 x 1024 │ 7 x 7 x 1024 │
│ FC 1 │ - │ 4096 │
│ FC 2 │ - │ 7 x 7 x 30 (1470) │
└────────────┴────────────────────────┴───────────────────┘ 上图中,至于为什么448x448通过conv成了224x224, 可以参考这里 https://blog.csdn.net/caomin1hao/article/details/80601255,因为一般会做zero-padding, padding = (f-1)/2

预训练的时候用 224x224 的图片,预测时用的448x448的,但是网络结构没有任何变化,只是输出按照比例缩小,比如本来检测网络第20层输出 14 x 14 x 1024 维度,预训练时输出的就是 7x7x1024. 参考的这里 https://blog.csdn.net/qq_30666517/article/details/80572659

  • v1 两个bounding box 怎么标注?

这里采用2个bounding box,有点不完全算监督算法,而是像进化算法。如果是监督算法,我们需要事先根据样本就能给出一个正确的bounding box作为回归的目标。但YOLO的2个bounding box事先并不知道会在什么位置,只有经过前向计算,网络会输出2个bounding box,这两个bounding box与样本中对象实际的bounding box计算IOU。这时才能确定,IOU值大的那个bounding box,作为负责预测该对象的bounding box。

训练开始阶段,网络预测的bounding box可能都是乱来的,但总是选择IOU相对好一些的那个,随着训练的进行,每个bounding box会逐渐擅长对某些情况的预测(可能是对象大小、宽高比、不同类型的对象等)。所以,这是一种进化或者非监督学习的思想。
训练样本的bounding box位置应该填写对象实际的bounding box,但一个对象对应了2个bounding box,该填哪一个呢?上面讨论过,需要根据网络输出的bounding box与对象实际bounding box的IOU来选择,所以要在训练过程中动态决定到底填哪一个bounding box。
 
 
 

YOLO v2 (YOLO9000):2016

Yolo v2 的网络结构如下:采用 Darknet-19 backbone, 输出 13x13x (5x25). 引入了 anchor box.
由于v2 去掉了fully connected layer, 这样可以对各种size 的输入进行traning, 这个技术叫 multi-scale traning, input size 的大小为 {320, 352, ..., 608}
  

Darknet-19 分类模型:

Darknet-19 对象检测模型:

看一下passthrough层。图中第25层route 16,意思是来自16层的output,即26*26*512,这是passthrough层的来源(细粒度特征)。第26层1*1卷积降低通道数,从512降低到64(这一点论文在讨论passthrough的时候没有提到),输出26*26*64。第27层进行拆分(passthrough层)操作,1拆4分成13*13*256。第28层叠加27层和24层的输出,得到13*13*1280。后面再经过3*3卷积和1*1卷积,最后输出13*13*125。
  • 为什么v2 比v1 运行更快,效果更好

faster: 采用了浮点运算更快的darknet-19结构, v1 的运算操作是8.52 billion operations, v2 是only requires 5.58 billion.

better: 采用了 BatchNorm的同时去掉了dropout 层, 采用 了high resolution classifier, K-means自动选取anchor box, multi-scale 训练使得能检测多种不同大小的对象
stronger: 采用了 wordTree的概念来预测超过9000中的对象 (9418)
  • v2 的训练过程

YOLO2的训练主要包括三个阶段。第一阶段就是先在ImageNet分类数据集上预训练Darknet-19,此时模型输入为 224*224 ,共训练160个epochs。然后第二阶段将网络的输入调整为 448*448 ,继续在ImageNet数据集上finetune分类模型,训练10个epochs,此时分类模型的top-1准确度为76.5%,而top-5准确度为93.3%。第三个阶段就是修改Darknet-19分类模型为检测模型,移除最后一个卷积层、global avgpooling层以及softmax层,并且新增了三个 3*3*1024卷积层,同时增加了一个passthrough层,最后使用 1*1 卷积层输出预测结果,输出的channels数为:num_anchors*(5+num_classes) ,和训练采用的数据集有关系。由于anchors数为5,对于VOC数据集(20种分类对象)输出的channels数就是125,最终的预测矩阵T的shape为 (batch_size, 13, 13, 125),可以先将其reshape为 (batch_size, 13, 13, 5, 25) ,其中 T[:, :, :, :, 0:4] 为边界框的位置和大小  ,T[:, :, :, :, 4] 为边界框的置信度,而 T[:, :, :, :, 5:] 为类别预测值。

YOLO9000依然采用YOLO2的网络结构,不过5个先验框减少到3个先验框,以减少计算量。YOLO2的输出是13*13*5*(4+1+20),现在YOLO9000的输出是13*13*3*(4+1+9418)。假设输入是416*416*3。

YOLO v3 (2018)



V3 检测网络结构:106层


                         
 
Ref:
  1. YOLO v1深入理解 (v1里面有两个bounding box, 那标注时候到底填哪一个呢?这个文章解释了这个)
  2. YOLOv1阅读笔记, 这个对yolo v1 的网络结构解释的不错
  3. 目标检测网络之 YOLOv3
  4. Understanding YOLO
  5. <机器爱学习>YOLOv2 / YOLO9000 深入理解
  6. yolo类检测算法解析——yolo v3
  7. 目标检测(九)--YOLO v1,v2,v3
  8. What’s new in YOLO v3?
  9. https://blog.csdn.net/qq_34784753/article/details/78797213,https://zhuanlan.zhihu.com/p/24916786?utm_source=qq&utm_medium=social,  这个对yolo v1 的cost函数解释的不错
  10. YOLOv3 深入理解

理解 YOLO的更多相关文章

  1. Pytorch从0开始实现YOLO V3指南 part1——理解YOLO的工作

    本教程翻译自https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/ 视频展示:https://w ...

  2. 快速理解YOLO目标检测

    YOLO(You Only Look Once)论文 近些年,R-CNN等基于深度学习目标检测方法,大大提高了检测精度和检测速度. 例如在Pascal VOC数据集上Faster R-CNN的mAP达 ...

  3. YOLO理解

    一.YOLO v1 1.网络结构 (1)最后一层使用线性激活函数: (2)其他各层使用leaky ReLU的激活函数: 2.Training (1) 将原图划分为SxS的网格.如果一个目标的中心落入某 ...

  4. 第三十五节,目标检测之YOLO算法详解

    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...

  5. YOLO V2 代码分析

    先介绍YOLO[转]: 第一个颠覆ross的RCNN系列,提出region-free,把检测任务直接转换为回归来做,第一次做到精度可以,且实时性很好. 1. 直接将原图划分为SxS个grid cell ...

  6. 深度剖析YOLO系列的原理

    深度剖析YOLO系列的原理 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/12072225.html 目录 1. ...

  7. 【目标检测】YOLO:

    PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CN ...

  8. YOLO: You Only Look Once论文阅读摘要

    论文链接: https://arxiv.org/pdf/1506.02640.pdf 代码下载: https://github.com/gliese581gg/YOLO_tensorflow Abst ...

  9. Yolo V3整体思路流程详解!

    结合开源项目tensorflow-yolov3(https://link.zhihu.com/?target=https%3A//github.com/YunYang1994/tensorflow-y ...

随机推荐

  1. Java基础系列--08_集合1

    ---恢复内容开始--- 集合当中有很多都是应用到泛型的技术,所以在讲集合之前,应该先将泛型的概念普及一下. 泛型:    (1)泛型是一种类型,但是这种类型是在编译或者调用方法时才确定.    (2 ...

  2. Rsync + sersync 实时同步备份

    一      Rsync + Sersync  实时同步介绍 1.Rsync 服务搭建介绍 云机上搭建Rsync server,在本地搭建Rsync Clinet. 2. Sersync 服务搭建介绍 ...

  3. FineUIPro/Mvc/Core v5.4.0即将发布(Core基础版,新功能列表)!

    FineUIPro/Mvc/Core v5.4.0 即将于 2019-03-04 发布,目前官网示例已更新,先睹为快:http://pro.fineui.com/http://mvc.fineui.c ...

  4. Java Core - ‘==’和‘equals’的区别

    不管是‘==’还是‘equals’,他们的比较都需要区分类型来讨论的: ‘==’ 当比较的数据类型是基本类型时,比较值是否相同 当比较的数据类型是引用类型时,不仅比较值相同还比较其所在内存地址是否相同 ...

  5. nginx的概念与几种负载均衡算法

    Nginx的背景 Nginx和Apache一样都是一种WEB服务器.基于REST架构风格,以URI(Uniform Resources Identifier,统一资源描述符)或URL(Uniform ...

  6. git常用命令一、git cherry-pick

    在自己的分支查看想要合并的节点的commit id : Git log —oneline -3   //查看最新的三个提交 commit id 切换到总分支: Git fetch Git pull G ...

  7. jmeter 安装

    3.1 windows10环境下测试工具jmeter安装与配置 3.1.1下载安装java 浏览器中打开链接:http://down-www.7down.net/pcdown/soft/xiazai/ ...

  8. MCMC算法解析

    MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性,然而这个这个函数非常之复杂,怎么去采样?这时,就可以借助MCMC的思想. 它与变分自编码不同在 ...

  9. 关系型数据库 VS 非关系型数据库

    一.关系型数据库? 1.概念 关系型数据库是指采用了关系模型来组织数据的数据库.简单来说,关系模式就是二维表格模型. 主要代表:SQL Server,Oracle,Mysql,PostgreSQL. ...

  10. 微信小程序工具类

    wechat-common-sdk ? 场景:目前工作中的项目需要包含并使用另一个项目. 也许是第三方库,或者你独立开发的,用于多个父项目的库. 现在问题来了:你想要把它们当做两个独立的项目,同时又想 ...