设 $$\bex f(z)=\frac{1}{(z-1)(z-2)}. \eex$$

(1) 求 $f(z)$ 在 $|z|<1$ 内的 Taylor 展式.

(2) 求 $f(z)$ 在圆环 $1<|z|<2$ 内的 Laurent 展式.

(3) 求 $f(z)$ 在圆环 $|z|>2$ 内的 Laurent 展式.

解答:

(1) $$\beex \bea f(z)&=\frac{1}{z-2}-\frac{1}{z-1}\\ &=-\frac{1}{2}\frac{1}{1-\frac{z}{2}} +\frac{1}{1-z}\\ &=-\frac{1}{2}\sum_{n=0}^\infty \sex{\frac{z}{2}}^n +\sum_{n=0}^\infty z^n\\ &=\sum_{n=0}^\infty \sex{1-\frac{1}{2^{n+1}}}z^n,\quad |z|<1. \eea \eeex$$

(2) $$\beex \bea f(z)&=\frac{1}{z-2}-\frac{1}{z-1}\\ &=-\frac{1}{2}\frac{1}{1-\frac{z}{2}} -\frac{1}{z}\frac{1}{1-\frac{1}{z}}\\ &=-\frac{1}{2}\sum_{n=0}^\infty \sex{\frac{z}{2}}^n -\frac{1}{z}\sum_{n=0}^\infty \frac{1}{z^n}\\ &=-\sum_{n=1}^\infty \frac{1}{z^n}-\sum_{n=0}^\infty \frac{z^n}{2^{n+1}},\quad 1<|z|<2. \eea \eeex$$

(3) $$\beex \bea f(z)&=\frac{1}{z-2}-\frac{1}{z-1}\\ &=\frac{1}{z}\frac{1}{1-\frac{2}{z}} -\frac{1}{z}\frac{1}{1-\frac{1}{z}}\\ &=\frac{1}{z}\sum_{n=0}^\infty \sex{\frac{2}{z}}^n -\frac{1}{z}\sum_{n=0}^\infty \sex{\frac{1}{z}}^n\\ &=\sum_{n=1}^\infty \frac{2^{n-1}-1}{z^n},\quad |z|>2. \eea \eeex$$

求复变函数的 Taylor 展式与 Laurent 展式[华中师范大学2010年复变函数复试试题]的更多相关文章

  1. 应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010年复变函数复试试题]

    应用留数定理计算实积分 $\dps{I(x)=\int_{-1}^1\frac{\rd t}{\sqrt{1-t^2}(t-x)}\ (|x|>1,x\in\bbR)}$ [华中师范大学2010 ...

  2. [复变函数]第17堂课 5 解析函数的 Laurent 展式与孤立奇点 5. 1 解析函数的 Laurent 展式

    0.  引言 (1)  $f$ 在 $|z|<R$ 内解析 $\dps{\ra f(z)=\sum_{n=0}^\infty c_nz^n}$ (Taylor 级数). (2)  $f$ 在 $ ...

  3. 位置式PID与增量式PID算法

    位置式PID与增量式PID算法  PID控制是一个二阶线性控制器     定义:通过调整比例.积分和微分三项参数,使得大多数的工业控制系统获得良好的闭环控制性能.     优点             ...

  4. Qt隐式共享与显式共享

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Amnes1a/article/details/69945878Qt中的很多C++类都使用了隐式数据共 ...

  5. Scala学习二十一——隐式转换和隐式参数

    一.本章要点 隐式转换用于类型之间的转换 必须引入隐式转换,并确保它们可以以单个标识符的形式出现在当前作用域 隐式参数列表会要求指定类型的对象.它们可以从当前作用域中以单个标识符定义的隐式对象的获取, ...

  6. Python的列表推导式,字典推导式,集合推导式使用方法

    推导式分为列表推导式(list),字典推导式(dict),集合推导式(set)三种 1.列表推导式也叫列表解析式.功能:是提供一种方便的列表创建方法,所以,列表解析式返回的是一个列表格式:用中括号括起 ...

  7. 转】C#接口-显式接口和隐式接口的实现

    [转]C#接口-显式接口和隐式接口的实现 C#中对于接口的实现方式有隐式接口和显式接口两种: 类和接口都能调用到,事实上这就是“隐式接口实现”. 那么“显示接口实现”是神马模样呢? interface ...

  8. 流式布局&固定宽度&响应式&rem

    我们现在在切页面布局的使用常用的单位是px,这是一个绝对单位,web app的屏幕适配有很多中做法,例如:流式布局.限死宽度,还有就是通过响应式来做,但是这些方案都不是最佳的解决方法. 1.流式布局: ...

  9. Scala 深入浅出实战经典 第61讲:Scala中隐式参数与隐式转换的联合使用实战详解及其在Spark中的应用源码解析

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-87讲)完整视频.PPT.代码下载: 百度云盘:http://pan.baidu.com/s/1c0noOt ...

随机推荐

  1. java.io.IOException: There appears to be a gap in the edit log. We expected txid ***, but got txid

    方式1 原因:namenode元数据被破坏,需要修复解决:恢复一下namenode hadoop namenode -recover 一路选择Y,一般就OK了 方式2 Need to copy the ...

  2. ios兼容 iphoneX ios10 ios11

    假设你有一个固定位置的标题栏,你的iOS10的CSS可能是这样写的: header { position: fixed; top:; left:; right:; height: 44px; padd ...

  3. 关于idea在运行web项目时部署的位置

    (转) 以前一直很好奇,在idea中运行tomcat,把项目部署到其中,运行起来,然后我去tomcat目录下去看,根本找不到我部署的项目 那我的项目是咋运行的啊… - - 后来我就查啊查 ,纠结啊纠结 ...

  4. 文本分类实战(八)—— Transformer模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  5. identity server4 证书

    我们需要对token进行签名, 这意味着identity server需要一对public和private key. 幸运的是, 我们可以告诉identity server在程序的运行时候对这项工作进 ...

  6. Python编码、集合set、深浅拷贝

    编码 : a.encode(' ')     windows 默认编码GBK ASCII : 最早的编码. ⾥⾯有英⽂⼤写字⺟, ⼩写字⺟, 数字, ⼀些特殊字符.没有中⽂, 8个01代码, 8个bi ...

  7. java如何获取一个对象的大小【转】

    When---什么时候需要知道对象的内存大小 在内存足够用的情况下我们是不需要考虑java中一个对象所占内存大小的.但当一个系统的内存有限,或者某块程序代码允许使用的内存大小有限制,又或者设计一个缓存 ...

  8. 页面跳转时,url 传大数据的参数不全的问题+序列化对象

    1.页面跳转时,url 传大数据的参数不全的问题 //传参: url: '/pages/testOfPhysical/shareEvaluation?detailInfo=' +encodeURICo ...

  9. Linux scp sudo

    command line - scp to remote server with sudo - Super Userhttps://superuser.com/questions/138893/scp ...

  10. JMeter二次开发(1)-eclipse环境配置及源码编译

    1.下载src并解压 http://jmeter.apache.org/download_jmeter.cgi   2.获取所需jar包,编译 ant download_jars ant instal ...