Codeforces 1064D/1063B Labyrinth
题目翻译
给你一个\(n*m\)的迷宫和起始点,有障碍的地方不能走,同时最多向左走\(x\)次,向右走\(y\)次,向上向下没有限制,问你有多少个格子是可以到达的。
输入样例
4 5
3 2
1 2
.....
.*.
...
*....
输出样例
10
数据范围
\(n,m\leqslant 2000\)
考虑最裸的\(bfs\),开一个队列,从起点开始,每搜到一个格子就打上标记。但是这样显然是错的,考虑下面这组数据:
.....
..
....
*..
*.**.
*....
这是一个\(6*5\)的网格,起始点为\((1,5)\),最多向左走\(5\)次,向右走\(1\)次。
如果我们的\(bfs\)先走的是上面的那条路的话,那么就会输出错误的答案(可以手模一下)。原因是我们给某些关键点打上标记时,剩余的向左走和向右走的次数也许不是最多的,这样会导致有些格子无法访问(但是这样竟然能过Pretest)。
于是我们改变一下搜索的顺序:用双端队列,向上走或向下走时就\(push\)到队头,向左走或向右走时就\(push\)到队尾(其实就是先处理一列)。这样我们就能保证给某个格子打上标记时,当前剩余的向左走和向右走的次数是最多的啦。
代码:
#include <bits/stdc++.h>
using namespace std;
#define N 2000
int n, m, r, c, pp, qq, vis[N+5][N+5], ans;
char a[N+5][N+5];
struct S {
int x, y, le, ri;
};
void bfs() {
deque<S> q;
q.push_front(S{r, c, pp, qq});
vis[r][c] = 1;
int nx, ny;
while(!q.empty()) {
S u = q.front(); q.pop_front();
nx = u.x+1, ny = u.y;
if(nx <= n && !vis[nx][ny] && a[nx][ny] == '.') {
vis[nx][ny] = 1;
q.push_front(S{nx, ny, u.le, u.ri});
}
nx = u.x-1, ny = u.y;
if(nx >= 1 && !vis[nx][ny] && a[nx][ny] == '.') {
vis[nx][ny] = 1;
q.push_front(S{nx, ny, u.le, u.ri});
}
nx = u.x, ny = u.y-1;
if(ny >= 1 && !vis[nx][ny] && u.le >= 1 && a[nx][ny] == '.') {
vis[nx][ny] = 1;
q.push_back(S{nx, ny, u.le-1, u.ri});
}
nx = u.x, ny = u.y+1;
if(ny <= m && !vis[nx][ny] && u.ri >= 1 && a[nx][ny] == '.') {
vis[nx][ny] = 1;
q.push_back(S{nx, ny, u.le, u.ri-1});
}
}
}
int main() {
scanf("%d%d%d%d%d%d", &n, &m, &r, &c, &pp, &qq);
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) cin >> a[i][j];
bfs();
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) ans += vis[i][j];
cout << ans << endl;
return 0;
}
Codeforces 1064D/1063B Labyrinth的更多相关文章
- CodeForces 1063B. Labyrinth 性质
给定$n *m$的格子 询问从$(r, c)$开始最多向左走$x$步,向右走$y$步 询问有多少个格子可以从$(r, c)$到达 有障碍物,$n, m \leqslant 2 * 10^3$ 对于一个 ...
- Codeforces 1064D Labyrinth(双端队列BFS)
题意: 给一个图,"*"不可以走,给你一个起点,限制向左走L次,向右走R次,上下不限制,问你最多可以走到多少个格子 思路: BFS,每次将上下走的策略加入队首,左右加入队尾,(相当 ...
- 【非原创】codeforces 1063B Labyrinth 【01bfs】
学习博客:戳这里 附本人代码: 1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 co ...
- Codeforces 1064 D - Labyrinth
D - Labyrinth 对于位置(i,j), j - c = R - L = const(常数), 其中R表示往右走了几步,L表示往左走了几步 所以R越大, L就越大, R越小, L就越小, 所以 ...
- CodeForces 616C The Labyrinth
先预处理出所有连通块,对于每一个*,看他四周的连通块即可 #include<cstdio> #include<cstring> #include<queue> #i ...
- codeforces 1064D 双端队列BFS
双端队列BFS解决的就是路径权值可能为0的图最短路问题,权值为0插入队头,否则插入队尾. 对于这个题,可以看作上下移动的路径的权值为0,左右移动权值为1,而且不能超过规定的步数. 直接广搜求覆盖的点的 ...
- [ CodeForces 1063 B ] Labyrinth
\(\\\) \(Description\) 给出一个四联通的\(N\times M\) 网格图和起点.图中有一些位置是障碍物. 现在上下移动步数不限,向左至多走 \(a\) 步,向右至多走 \(b\ ...
- CF 1063B Labyrinth
传送门 解题思路 看上去很简单,\(bfs\)写了一发被\(fst\)...后来才知道好像一群人都被\(fst\)了,这道题好像那些每个点只经过一次的传统\(bfs\)都能被叉,只需要构造出一个一块一 ...
- [Codeforces Round #516][Codeforces 1063B/1064D. Labyrinth]
题目链接:1063B - Labyrinth/1064D - Labyrinth 题目大意:给定一个\(n\times m\)的图,有若干个点不能走,上下走无限制,向左和向右走的次数分别被限制为\(x ...
随机推荐
- [20190409]pre_page_sga=true与连接缓慢的问题.txt
[20190409]pre_page_sga=true与连接缓慢的问题.txt --//曾经遇到11g下设置pre_page_sga=true启动缓慢的问题(没有使用hugepages).--//链接 ...
- Python XML解析之DOM
DOM说明: DOM:Document Object Model API DOM是一种跨语言的XML解析机制,DOM把整个XML文件或字符串在内存中解析为树型结构方便访问. https://docs. ...
- c/c++ 网络编程 UDP 改变IP地址
网络编程 UDP 改变IP地址 在程序里动态改变主机的IP地址 1,改变ipv4的地址 #include <stdio.h> #include <string.h> #incl ...
- NSTimer 不工作 不调用方法
比如,定义一个NSTimer来隔一会调用某个方法,但这时你在拖动textVIew不放手,主线程就被占用了.timer的监听方法就不调用,直到你松手,这时把timer加到 runloop里,就相当于告诉 ...
- Kafka 特性
Kafka 特性 标签(空格分隔): Kafka 支持多个生产者 多个生成者连接Kafka来推送消息,这个和其他的消息队列功能基本上是一样的 支持多个消费者 Kafka支持多个消费者来读取同一个消息流 ...
- 既然CPU同一时间只能执行一个线程,为什么存在并发问题
一点小疑惑终于解开啦 1.CPU的时间是按时间片分的,而不是一个时间点,并发问题是由于CPU线程切换导致的. 现在假设有一段代码 if(i == 1) { i++; //断点1 system.out. ...
- Windows Service 学习系列(二):C# windows服务:安装、卸载、启动和停止Windows Service几种方式
一.通过InstallUtil.exe安装.卸载.启动.停止Windows Service 方法一 1.以管理员身份运行cmd 2.安装windows服务 切换cd C:\Windows\Micros ...
- Kafka设计解析(六)- Kafka高性能架构之道
本文从宏观架构层面和微观实现层面分析了Kafka如何实现高性能.包含Kafka如何利用Partition实现并行处理和提供水平扩展能力,如何通过ISR实现可用性和数据一致性的动态平衡,如何使用NIO和 ...
- Spring Boot 学习之路二 配置文件 application.yml
一.创建配置文件 如图所示,我们在resources文件夹中新建配置文件application.yml 结构图 二.一些基本配置 server: port: 8090 //配置端口 session ...
- SQL UCASE() 函数
UCASE() 函数 UCASE 函数把字段的值转换为大写. SQL UCASE() 语法 SELECT UCASE(column_name) FROM table_name SQL UCASE() ...