数据结构

  redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作。如果需要缓存能够支持更复杂的结构和操作, redis 会是不错的选择。

  redis 主要有以下几种数据类型:string、hash、list、set、sorted set

过期策略

  redis 过期策略是:定期删除+惰性删除+内存淘汰机制。

  定期删除:指的是 redis 默认是每隔 100ms 就随机抽取一些设置了过期时间的 key,检查其是否过期,如果过期就删除。假设 redis 里放了 10w 个 key,都设置了过期时间,你每隔几百毫秒,就检查 10w 个 key,那 redis 基本上就死了,cpu 负载会很高的,消耗在你的检查过期 key 上了。注意,这里可不是每隔 100ms 就遍历所有的设置过期时间的 key,那样就是一场性能上的灾难。实际上 redis 是每隔 100ms 随机抽取一些 key 来检查和删除的。

  但是问题是,定期删除可能会导致很多过期 key 到了时间并没有被删除掉,那咋整呢?所以就是惰性删除了。

  惰性删除:这就是说,在你获取某个 key 的时候,redis 会检查一下 ,这个 key 如果设置了过期时间那么是否过期了?如果过期了此时就会删除,不会给你返回任何东西。

获取 key 的时候,如果此时 key 已经过期,就删除,不会返回任何东西。

  但是实际上这还是有问题的,如果定期删除漏掉了很多过期 key,然后你也没及时去查,也就没走惰性删除,此时会怎么样?如果大量过期 key 堆积在内存里,导致 redis 内存块耗尽了,咋整?

  内存淘汰机制:redis 内存淘汰机制有以下几个:

  • noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,这个一般没人用吧,实在是太恶心了。
  • allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(这个是最常用的)。
  • allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key,这个一般没人用吧,为啥要随机,肯定是把最近最少使用的 key 给干掉啊。
  • volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(这个一般不太合适)。
  • volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个 key。
  • volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的 key 优先移除。

  如果你是一个老程序员,有一定积累,那么可能知道实现LRU算法有个现成的工具LinkHashMap,下面给一个LinkHashMap的LRU实现;

class LRUCache<K, V> extends LinkedHashMap<K, V> {
private final int CACHE_SIZE; /**
* 传递进来最多能缓存多少数据
*
* @param cacheSize 缓存大小
*/
public LRUCache(int cacheSize) {
// true 表示让 linkedHashMap 按照访问顺序来进行排序,最近访问的放在头部,最老访问的放在尾部。
super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);
CACHE_SIZE = cacheSize;
} @Override
protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
// 当 map中的数据量大于指定的缓存个数的时候,就自动删除最老的数据。
return size() > CACHE_SIZE;
}
}

持久化策略

  RDB:RDB持久化是把当前进程数据生成快照保存到硬盘的过程,触发RDB持久化过程分为手动触发和自动触发。

  优点:

  • RDB是一个紧凑压缩的二进制文件,代表Redis在某一个时间点上的数据快照,非常适合用于备份,全量复制等场景。
  • Redis加载RDB恢复数据远远快于AOF方式
  • RDB对redis对外提供读写服务的时候,影像非常小,因为redis 主进程只需要fork一个子进程出来,让子进程对磁盘io来进行rdb持久化

  缺点:

  • RDB方式数据没办法做到实时持久化/秒级持久化。因为bgsave每次运行都要执行fork操作创建子进程,属于重量级操作,频繁执行成本过高。
  • RDB文件使用特定二进制格式保存,Redis版本演进过程中有多个格式的RDB,存在老版本Redis服务无法兼容新版RDB格式的问题。 针对RDB不适合实时持久化的问题,Redis提供了AOF持久化方式来解决
  • 如果redis要故障时要尽可能少的丢失数据,RDB没有AOF好,例如1:00进行的快照,在1:10又要进行快照的时候宕机了,这个时候就会丢失10分钟的数据

  AOF:(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中命令达到恢复数据的目的。AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式

  优点:

  • AOF可以更好的保护数据不丢失,一般AOF会以每隔1秒,通过后台的一个线程去执行一次fsync操作,如果redis进程挂掉,最多丢失1秒的数据。
  • AOF以appen-only的模式写入,所以没有任何磁盘寻址的开销,写入性能非常高。
  • AOF日志文件的命令通过非常可读的方式进行记录,这个非常适合做灾难性的误删除紧急恢复,如果某人不小心用flushall命令清空了所有数据,只要这个时候还没有执行rewrite,那么就可以将日志文件中的flushall删除,进行恢复。

  缺点:

  • 对于同一份文件AOF文件比RDB数据快照要大。
  • AOF开启后支持写的QPS会比RDB支持的写的QPS低,因为AOF一般会配置成每秒fsync操作,每秒的fsync操作还是很高的
  • 数据恢复比较慢,不适合做冷备。

  决择:

  • 不要仅仅使用RDB这样会丢失很多数据。
  • 也不要仅仅使用AOF,因为这一会有两个问题,第一通过AOF做冷备没有RDB做冷备恢复的速度快;第二RDB每次简单粗暴生成数据快照,更加健壮。
  • 综合AOF和RDB两种持久化方式,用AOF来保证数据不丢失,作为恢复数据的第一选择;用RDB来做不同程度的冷备,在AOF文件都丢失或损坏不可用的时候,可以使用RDB进行快速的数据恢复。

集群模式

  在 redis3.x 版本中,便能支持 cluster 模式,而 memcached 没有原生的集群模式,需要依靠客户端来实现往集群中分片写入数据。

  如果你的数据量很少,主要是承载高并发高性能的场景,比如你的缓存一般就几个 G,单机就足够了,可以使用 replication,一个 master 多个 slaves,要几个 slave 跟你要求的读吞吐量有关,然后自己搭建一个 sentinel 集群去保证 redis 主从架构的高可用性。

  redis cluster,主要是针对海量数据+高并发+高可用的场景。redis cluster 支撑 N 个 redis master node,每个 master node 都可以挂载多个 slave node。这样整个 redis 就可以横向扩容了。如果你要支撑更大数据量的缓存,那就横向扩容更多的 master 节点,每个 master 节点就能存放更多的数据了。

  另外,保障Redis缓存系统的高可用和高并发的原理,主要包括两个内容:主从架构模式,哨兵集群

性能对比

  由于 redis 只使用单核,而 memcached 可以使用多核,所以平均每一个核上 redis 在存储小数据时比 memcached 性能更高。而在 100k 以上的数据中,memcached 性能要高于 redis。虽然 redis 最近也在存储大数据的性能上进行优化,但是比起 memcached,还是稍有逊色。

线程模型

  redis 内部使用文件事件处理器 file event handler,这个文件事件处理器是单线程的,所以 redis 才叫做单线程的模型。它采用 IO 多路复用机制同时监听多个 socket,将产生事件的 socket 压入内存队列中,事件分派器根据 socket 上的事件类型来选择对应的事件处理器进行处理。

  文件事件处理器的结构包含 4 个部分,本质是类React模型及状态机和调度模型的结合:

  • 多个 socket,socket不同状态有不同的事件,如果用NIO的话就支持面向channel编程
  • IO 多路复用程序,多路复用这里特指对多个IO,复用同一个线程通道去处理,多路复用程序效率高可能和0拷贝技术相关,但多路复用也是NIO的最大特点,也可以实现伪NIO或者AIO,
  • 文件事件分派器,多路复用之后的分派点,所有事件和实例状态都会分派给不同的处理器
  • 事件处理器(连接应答处理器、命令请求处理器、命令回复处理器)

  多个 socket 每个都可能同时有各自的操作,每个操作对应不同的文件事件,但是 IO 多路复用程序会监听多个 socket,会将产生事件的 socket 放入队列中排队,事件分派器每次从队列中取出一个 socket,根据 socket 的事件类型交给对应的事件处理器进行处理。

  来看客户端与 redis 的一次通信过程:

  首先,redis 服务端进程初始化的时候,会将 server socket 的 AE_READABLE 事件与连接应答处理器关联。这里先分清server socket是专门建立链接的一个特殊的socket;

  客户端 socket01 向 redis 进程的 server socket 请求建立连接,此时 server socket 会产生一个 AE_READABLE 事件,IO 多路复用程序监听到 server socket 产生的事件后,将该 socket 压入队列中。文件事件分派器从队列中获取 socket,交给连接应答处理器。连接应答处理器会创建一个能与客户端通信的 socket01,并将该 socket01 的 AE_READABLE 事件与命令请求处理器关联。

  假设此时客户端发送了一个 set key value 请求,此时 redis 中的 socket01 会产生 AE_READABLE 事件,IO 多路复用程序将 socket01 压入队列,此时事件分派器从队列中获取到 socket01 产生的 AE_READABLE 事件,由于前面 socket01 的 AE_READABLE 事件已经与命令请求处理器关联,因此事件分派器将事件交给命令请求处理器来处理。命令请求处理器读取 socket01 的 key value 并在自己内存中完成 key value 的设置。操作完成后,它会将 socket01 的 AE_WRITABLE 事件与命令回复处理器关联。

  如果此时客户端准备好接收返回结果了,那么 redis 中的 socket01 会产生一个 AE_WRITABLE 事件,同样压入队列中,事件分派器找到相关联的命令回复处理器,由命令回复处理器对 socket01 输入本次操作的一个结果,比如 ok,之后解除 socket01 的 AE_WRITABLE 事件与命令回复处理器的关联。

这样便完成了一次通信。

单线程模型

  • 纯内存操作
  • 核心是基于非阻塞的 IO 多路复用机制
  • 单线程反而避免了多线程的频繁上下文切换问题

【高并发架构】Redis特点及构件模型的更多相关文章

  1. 高并发架构系列:Redis为什么是单线程、及高并发快的3大原因详解

    Redis的高并发和快速原因 1.redis是基于内存的,内存的读写速度非常快: 2.redis是单线程的,省去了很多上下文切换线程的时间: 3.redis使用多路复用技术,可以处理并发的连接.非阻塞 ...

  2. 【高并发架构】Redis缓存高并发之-主从架构

    Redis主从架构 到目前为止,Redis Cluster 能实现很好的性能,但如果只是缓存几个G的数据,那么单机Redis就足够了,但缓存主要用来读的,单机的QPS有一定的极限,一两万QPS一台应该 ...

  3. 高并发架构系列:Redis并发竞争key的解决方案详解

    https://blog.csdn.net/ChenRui_yz/article/details/85096418 https://blog.csdn.net/ChenRui_yz/article/l ...

  4. 高并发架构系列:MQ消息队列的12点核心原理总结

    消息队列已经逐渐成为分布式应用场景.内部通信.以及秒杀等高并发业务场景的核心手段,它具有低耦合.可靠投递.广播.流量控制.最终一致性 等一系列功能. 无论是 RabbitMQ.RocketMQ.Act ...

  5. 高并发架构系列:如何从0到1设计一个类Dubbo的RPC框架

    在过去持续分享的几十期阿里Java面试题中,几乎每次都会问到Dubbo相关问题,比如:“如何从0到1设计一个Dubbo的RPC框架”,这个问题主要考察以下几个方面: 你对RPC框架的底层原理掌握程度. ...

  6. 朱晔的互联网架构实践心得S2E6:浅谈高并发架构设计的16招

    朱晔的互联网架构实践心得S2E6:浅谈高并发架构设计的16招 概览 标题中的高并发架构设计是指设计一套比较合适的架构来应对请求.并发量很大的系统,使系统的稳定性.响应时间符合预期并且能在极端的情况下自 ...

  7. JAVA架构师眼中的高并发架构,分布式架构 应用服务器集群

    前言 高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等. 为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适 ...

  8. 高并发架构系列:Redis缓存和MySQL数据一致性方案详解

    一.需求起因 在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节.所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库. 这个业务场景, ...

  9. 【高并发】Redis如何助力高并发秒杀系统,看完这篇我彻底懂了!!

    写在前面 之前,我们在<[高并发]高并发秒杀系统架构解密,不是所有的秒杀都是秒杀!>一文中,详细讲解了高并发秒杀系统的架构设计,其中,我们介绍了可以使用Redis存储秒杀商品的库存数量.很 ...

随机推荐

  1. Appnium-API-Status

    Status Java:// TODO Python:selenium.webdriver.common.utils.is_url_connectable(port) Description Retu ...

  2. springboot启动流程

    @EnableDiscoveryClient @SpringBootApplication public class ProducerApplication { public static void ...

  3. APP的三种开发模式

    转载于http://pleasureswx123.github.io/2014/09/15/APP%E7%9A%84%E4%B8%89%E7%A7%8D%E5%BC%80%E5%8F%91%E6%A8 ...

  4. Java编程思想(后)

    Java编程思想(后) 持有对象 如果一个程序只包含固定数量的且其生命期都是已知的对象,那么这是一个非常简单的程序. Java中的库基本类型: List, Set, Queue和Map --- 称为集 ...

  5. 从koa-session源码解读session本质

    前言 Session,又称为"会话控制",存储特定用户会话所需的属性及配置信息.存于服务器,在整个用户会话中一直存在. 然而: session 到底是什么? session 是存在 ...

  6. Python爬去有道翻译

    注:传入的类型为POST类型,所以需要使用urllib.parse.urlencode(),将字典转换成URL可用参数: 使用json.loads(),将输出的json格式,转换为字典类型 impor ...

  7. 五 Zabbix全网监控

    监控的作用 我们的职责   1.保障企业数据的安全可靠.   2.为客户提供7*24小时服务.   3.不断提升用户的体验.在关键时刻,提前提醒我们服务器要出问题了当出问题之后,可以便于找到问题的根源 ...

  8. 2-1、FileBeat入门

    FileBeat入门 要开始使用Filebeat设置,请安装并配置相关产品: 用于存储和索引数据的Elasticsearch. 用户界面的Kibana. 用于解析和增强数据的Logstash(可选). ...

  9. mycat+mysql集群:实现读写分离,分库分表

    1.mycat文档:https://github.com/MyCATApache/Mycat-doc       官方网站:http://www.mycat.org.cn/ 2.mycat的优点: 配 ...

  10. OpenCV-Python-图像梯度

    图像梯度 我们知道一阶导数可以用来求极值.把图片想象成连续函数,因为边缘部分的像素值与旁边的像素明显有区别,所以对图片局部求极值,就可以得到整幅图片的边缘信息.不过图片是二维的离散函数,导数就变成了差 ...